• Title/Summary/Keyword: HTS current lead

Search Result 50, Processing Time 0.035 seconds

Structural Design and Thermal Analysis of a Module Coil for a 750 kW-Class High Temperature Superconducting Generator for Wind Turbine (풍력 터빈용 750 kW 급 고온초전도 발전기 모듈의 코일 구조 설계 및 열 해석)

  • Tuvdensuren, Oyunjargal;Go, Byeong-Soo;Sung, Hae-Jin;Park, Min-Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.33-40
    • /
    • 2019
  • Many companies have tried to develop wind power generators with a larger capacity, smaller size and lighter weight. High temperature superconducting (HTS) generators are more suitable for wind power systems because they can reduce volume and weight compared with conventional generators. However, the HTS generator has problems such as huge vacuum vessel and the difficulty of repairing the HTS field coils. These problems can be overcome through the modularization of the HTS field coil. The HTS module coil require a current leads (CLs) for deliver DC current, which causes a large heat transfer load. Therefore, CLs should be designed optimally for reducing the conduction and Joule heat loads. This paper deals with a structural design and thermal analysis of a module coil for a 750 kW-class HTS generator. The conduction and radiation heat loads of the module coils were analysed using a 3D finite element method program. As a result, the total thermal load was less than the cooling capacity of the cryo-cooler. The design results can be effectively utilized to develop a superconducting generator for wind power generation systems.

700Amp class of HTS current lead Fabrication (700A급 고온초전도 전류도입선 제조)

  • 박승남;박치완;장건익;하동우;성태현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.72-75
    • /
    • 2003
  • HTS tubes were fabricated in terms of various SrSO4 additions by Centrifugal Forming Method. For powder melting by induction, the optimum temperature ranges of melting and preheating were 105$0^{\circ}C$~110$0^{\circ}C$ and 55$0^{\circ}C$ for 30min respectively The mould rotating speed was 1000rpm. A tube was annealed at 84 $0^{\circ}C$ for 72 hours in oxygen atmosphere. The plates like grains more than 20${\mu}{\textrm}{m}$ were well developed along the rotating direction of mould regardless of the amounts of SrSO4 in Bi2212. The measured Ic and Jc at 77K(B = 0T) in Bi2212 with 7% SrSO4 composition were about 680A and 380A/$\textrm{cm}^2$.

  • PDF

Recent Development of Bulk High-Tc Superconductors

  • Yoo, Sang-Im
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.88-95
    • /
    • 2002
  • Recent development in the field of RE-Ba-Cu-O (REBCO, RE: Y or rare earth elements) bulk high-Tc superconductors (HTS) is reviewed in the present paper. After the fatal weak link problem of sintered REBCO superconductors has been overcome by melt processing, this field has been greatly advanced during last ten years. The critical current density $J_c$ at 77 K has been enhanced by introducing effective flux pinning sites into the $REBa_2Cu_3O_y$ (RE123) superconducting matrix. Large melt-textured REBCO bulk crystals have been fabricated with the TSMG(top-seeded melt growth) technique. Mechanical properties of REBCO bulks have been improved by using the Ag additive or epoxy resin. Real bulk applications such as current lead, fault current limiter, flywheel energy storage system, magnetic field source, magnetic separation system, and etc., surely come true near future.

  • PDF

Establishment of an easy Ic measurement method of HTS superconducting tapes using clipped voltage taps

  • Shin, Hyung-Seop;Nisay, Arman;Dedicatoria, Marlon;Sim, KiDeok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.29-32
    • /
    • 2014
  • The critical current, $I_c$ of HTS superconducting tapes can be measured by transport or contactless method. Practically, the transport method using the four-probe method is the most common. In this study, a simple test procedure by clipping the voltage lead taps have been introduced instead of soldering which reduces time and effort and thereby achieving a much faster measurement of $I_c$. When using a pair of iron clips, $I_c$ value decreased as compared with the measured one by standard method using soldered voltage taps and varies with the width of the clipped specimen part. However, when using a pure Cu clip, both by clipping and by soldering voltage taps give a comparable result and $I_c$ measured are equal and close to the samples specification. As a result, material to be used as voltage clip should be considered and should not influence the potential voltage between the leads during $I_c$ measurement. Furthermore, the simulation result of magnetic flux during $I_c$ measurement test showed that the decrease of $I_c$ observed in the experiment is due to the magnetic flux density, $B_y$ produced at the clipped part of the sample by the operating current with iron clips attached to the sample.

Influence of Tape's Critical Currents and Current Distributions on AC Loss Measurement in a Multi-tape Conductor (임계전류 및 전류분포가 다중테이프 초전도도체의 교류손실 측정에 미치는 영향)

  • Ryu Kyung Woo;Ma Y. H.;Choi Byoung Ju;Hwang S. D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.47-50
    • /
    • 2005
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables, which consist of a number of lli 2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. In this work we have prepared a multi-tape conductor composed of Bi-2223 tapes. The at losses of the conductor have experimentally investigated. The loss tests indicate that the effect of tapes critical currents on AC loss measurement in the multi tape conductor is negligible only if currents in the tapes flow uniformly Moreover, the measured tosses of the conductor are in good agreement with the sum of the transport losses in the tapes. However, in the case of non-uniform current distributions, the measured AC losses considerably depend on the current distribution parameter of the positioning of a voltage lead. Thus special cautions should be needed for the measurement of the true AC losses in the short power cable samples.

Test and Fabrication of the 1MJ Superconducting Magnetic Energy Storage System (1MJ급 초전도에너지저장시스템 제작 및 평가)

  • Kim, H.J.;Seong, K.C.;Cho, J.W.;Kim, S.W.;Bae, J.H.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.685-687
    • /
    • 2002
  • For several decades researches and developments on superconducting magnetic energy storage (SMES) system have been done for efficient electric power management. Korea Electrotechnology Research Institute(KERI) have developed of a 1MJ. 300kVA SMES System for improving power quality in sensitive electric loads. We developed the code for design of a SMES magnet. which could find the parameters of the SMES magnet having minimum amount of superconductors for the same stored energy. and designed the 1MJ SMES magnet by using it. This paper describes the design. fabrication and experimental results for the SMES magnet. cryostat, HTS current lead and power converter.

  • PDF

Fabrication and Test Results of Superconducting Magnet for Crystal Growing System (단결정 성장용 초전도 마그네트의 제작 및 성능평가)

  • 심기덕;진홍범;최석진;김경한;한호한;김형진;이봉근;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.374-377
    • /
    • 2002
  • Magnetic field is necessary to control the convection of melted silicon and to improve the quality of the wafer in the 12inch silicon wafer growing process. Nowadays, superconducting magnet is used in this process. We fabricated and tested a saddle shaped superconducting magnet for 8inch silicon wafer growing system. And the protection circuits for HTS current lead and superconducting coil are designed and manufactured. In this paper, their manufacturing process and test results are introduced.

  • PDF

Design of UPS system using SMB Flywheel Energy Storage System (초전도 플라이휠 에너지 저장시스템을 이용한 UPS 설계)

  • 정환명;최재호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.610-619
    • /
    • 2000
  • This paper presents an off-line UPS using the high temperature superconductive magnetic bearing. FES(Flywheel Energy Storage) system has good advantages in compare with lead acid battery. So, high efficiency FES using high temperature SMB(superconductive magnetic bearing) was composed in this paper. The outer rotor type of PMSM(Permanent Magnet Synchronous Motor) as motor/generator was used for the experiment, and square wave current and sinusoidal wave control methods was compared for high efficiency operation of motor/generator. The circuit for in phase sinusoidal wave current control with EMF in the full speed range was designed and the proposed flywheel energy storage system was applied in single phase off-line UPS system. As the stable operation characteristics of prototype system was confirmed, the its excellence as energy storage device in Off-line UPS was proved.

  • PDF

Fabrication and characteristics of current lead with 2G HTS tapes (2G 고온초전도 도체를 이용한 전류리드 제작 및 특성)

  • Sohn, Myung-Hwan;Kim, Seok-Ho;Sim, Ki-Deok;Bae, Jun-Han;Lee, Seok-Ju;Eom, Beom-Yong;Park, Hae-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.760_761
    • /
    • 2009
  • 초전도 시스템에서 전류를 공급하는 역할을 하는 전류리드는 없어서는 안 될 핵심 부품이다. Powder-in-tube(PIT) 법으로 제작한 1세대(1G) 고온초전도 선재보다 열전달특성이 나쁜 2세대(2G) 고온초전도 선재를 이용하여 고온초전도 전류리드를 제작하였다. 사용한 선재는 미국 AMSC사 선재이다. 초전도 자석으로의 열침입을 최소화하기 위해 지지구조물은 GFRP를 사용하였고 금속연결부는 무산소동을 사용하였다. 2G 선재 6가닥을 사용하여 제작한 전류리드는 액체질소 온도에서 I-V 특성을 평가한 결과 약 400 A급 전류리드도 사용 가능하다고 판단되었으며, 열전달 특성을 측정하기 위해 무냉매형 특성평가장치를 사용하였는데, 77 K과 7 K 사이에서 약 50 mW정도 였다. 본 논문에선 2G 고온초전도 선재를 사용하여 제작한 전류리드의 전기적 열적 특성에 대해 논의하고자 한다.

  • PDF

Current status of natural product industry and its commercial application to health functional foods

  • Park, Jong Dae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.21-21
    • /
    • 2018
  • Natural product substances have historically served as the most significant also be prepared by source of new leads for pharmaceutical development. They can chemical synthesis(both semisynthesis and total synthesis) and have played a important role in the field of organic chemistry by providing synthetic targets. Rcently, they have also been extended for commercial purpose to refer to medicinal products, health functional foods, dietary supplements and cosmetics from natural sources. A large number of currently prescribed drugs have been either directly derived from or inspired by natural products. However, with the advent of robotics, bioinformatics, high throughput screening(HTS), molecular biology-biotechnology, combinatorial chemistry, in silico(molecular modeling) and other methodologies, the pharmaceutical industry has largely moved away from plant derived natural products as a source for leads and prospective drug candidates. The strategy for natural prduct industry is now changing from drug approaches to health foods by identifying effective natural products as preparations. In Korea, a lot of development of natural product based drugs have been done, but very few on health functional foods. The concept of natural product based health foods is not active components as lead compounds but standardized extracts or preparation mixed with other medicinal plants. The representative material has been recently known to be a standardized ginseng extract "Ginsana G 115" developed by Swiss Pharmaton company. The purpose of this presentation is to underline how natural products research continues to make significant contributions in the domain of discovery and development of new health functional foods. It is proposed to present the development of high value added health food or health functional foods through scientific investigation on efficacy and standardization of new materials form natural products.

  • PDF