• Title/Summary/Keyword: HTS(High Temperature Superconducting) Cable

Search Result 123, Processing Time 0.035 seconds

Pressure Drop Characteristics on HTS Power Cables with LN2 Flow (초전도 케이블 냉각유로에서의 압력강하 특성)

  • Koh Deuk-Yong;Yeom Han-Kil;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • High temperature superconducting (HTS) power cable requires forced sub-cooled LN2 flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65 K and 77 K. The HTS power cable needs sufficient cooling to overcome its low temperature heat load. For successful cooling, the hydraulic characteristics of the HTS power cable must be well investigated to design the cables. Especially, the pressure drop in the cable is an important design parameter, because the pressure drop decides the length of the cable, size of the coolant circulation pump and circulation pressure, etc. This paper describes measurement and investigation of the pressure drop of the cooling system. In order to reduce the total pressure drop of the cooling system, the flow rate of liquid nitrogen must be controlled by rotational speed of the circulation pump.

Steady and Transient State Analysis on Three Phase-in One Enclosure Type HTS Cable (3상 일괄형 Pipe Type HTS 케이블의 정상 및 과도상태 해석)

  • Jang, Ju-Yeong;Lee, Jong-Beom;Kim, Yong-Kap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1748-1753
    • /
    • 2010
  • This paper suggests an improved technique to establish the modeling regarding steady and transient state on three phase-in one cryostat type HTS(High Temperature Superconducting) cable. The proposed modeling is established using EMTP/ATPDraw and TACS and MODELS provided by that. It has higher accuracy than the conventional method, as the actual HTS cable is modelled. Steady and transient state analysis performed by EMTP/ATPDraw calculate the current of conductor, shield and former, respectively. In case of the transient state modeled quench state occurred by a single line-to-ground fault, current of conductor shield and former are also calculated, respectively. Especially, various fault resistances and angles are considered to improve the reliability during transient state analysis. Analysis results reveal that the proposed technique improves the accuracy of modeling.

A Study on Insulation Characteristics by Thickness of Laminated Polypropylene Paper for an HTS Transmission Cable (송전급 HTS 케이블용 반합성지의 두께에 따른 절연특성 연구)

  • Choi, Jin-Wook;Choi, Jae-Hyeong;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.35-38
    • /
    • 2009
  • The high temperature superconducting(HTS) power cable, as a key component of the next generation power transmission system, operates cost-effectively because of much less transmission loss. Currently, a world-wide research has been undertaken actively. In this research, we designed insulation thickness and investigated thickness effect of laminated polypropylene paper(LPP) which is insulation material of HTS cable in case of AC and impulse breakdown.

A Operated Characteristic Analysis of HTS Cable in Unbalanced Load Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 불평형 부하에서의 초전도 케이블의 운전특성 해석)

  • Lee, Hyun-Chul;Hwang, Si-Dol;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1713-1719
    • /
    • 2008
  • A high temperature superconducting power cable (HTS power cable) was applied large current capacity by no resistance in normal state. Fault state was risen out of over-current but, it was limited to resistance. This study was modeling equivalence, and unbalanced state analyzed operating characteristic of HTS power cable. The equivalence model was composed superconductor, shield, and former part. This model simulation was appeared conductor and shield current in normal state, but unbalanced state was appeared former current as rise current by resistance. So it need to sufficiently influenced the quench characteristic when the former design.

Transient State Analysis of HTS Cable Using EMTP-RV (EMTP-RV를 이용한 초전도 케이블 과도상태 해석)

  • Ha, Chul-Jong;Yang, Byeong-Mo;Lee, Hyun-Chul;Lee, Geun-Joon;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1194-1198
    • /
    • 2010
  • A high temperature superconducting power cable (HTS power cable) was applied large current capacity by no resistance in normal state. Fault state was risen out of over-current but, it was limited to resistance. this study was modeling equivalence, and unbalanced state analyzed operating charateristics of HTS power cable. The equivalence model was composed superconductor, shield, and former part. This model simulation was appeared conductor and shield current in normal state, but fault state was appeared former current as rise current by resistance. so it need to sufficiently influenced the quench characteristic when the former design.

The Characteristics of Electrical Breakdown and Tensile Stress of Dielectric Paper for Insulation of HTS Cable (고온 초전도 케이블 절연을 위한 절연지의 인장응력 및 절연파괴 특성)

  • Kim, Young-Seok;Kwak, Dong-Soon;Kim, Hae-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.61-64
    • /
    • 2003
  • The degradation of the dielectric properties of insulating papers that were used under loaded conditions at cryogenic temperature was paid attention. Electrical and tensile stress properties of dielectric paper at cryogenic temperature have been investigated to optimum insulating design of high-Tc superconducting(HTS) cable. Tensile strength of PPLP in liquid nitrogen was high more than that of air, but tensile strain could know that decrease sharply. According as tensile strength increases, the breakdown stress of PPLP in liquid nitrogen was decreased.

  • PDF

DC and impulse electrical breakdown characteristics of LPP in liquid nitrogen for a HTS DC cable (고온초전도 DC케이블용 LPP의 액체질소 중 DC 및 임펄스 절연파괴 특성)

  • Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Min, Chi-Hyun;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.52-56
    • /
    • 2007
  • A high temperature superconducting (HTS) DC cable is ideal for transmitting large blocks of electrical power over a long distance. However, it must be designed to operate reliably within the constraints of the electrical systems. Therefore, a study of the electrical insulation is important to develop a HTS DC cable because it is operated in a cryogenic high voltage environment. This paper discusses the dielectric constructions of the cable and summarizes the experimental results on the DC and impulse dielectric characteristics of the insulation material. in sheet form and mini-model cable configuration. This shows how to design such insulation to be operated reliably. These studies are essential for the insulation design of a HTS DC cable operated in cryogenic environment.

Protection Coordination to Protect the Superconducting Cable in Icheon Substation (이천 변전소 초전도 케이블 보호를 위한 보호협조 방안에 관한 연구)

  • Lee, Han-Sang;Suh, Jae-Wan;Jung, Chang-Ho;Yang, Byung-Mo;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.501-502
    • /
    • 2011
  • Based on the several advantages of high-temperature superconducting cable, there are many researches about HTS cable. In the aspect of power system engineering, since it has very low impedance, approximately zero, it is profitable for large capacity distribution line into the large scale load. In the step of its verifications, the HTS cable had been installed in Icheon substation and operated. In this paper, the protection coordination for Icheon substation had been designed and verified using PSCAD/EMTDC.

  • PDF

Operational characteristics analysis of protective relay for utility application of HTS power cable (초전도 전력케이블의 계통 적용을 위한 보호계전기의 동작특성 분석)

  • Kim, Jae-Ho;Kim, Jin-Geun;Sim, Ki-Deok;Cho, Jeon-Wook;Yoon, Jae-Young;Lee, Seung-Ryul;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.57-58
    • /
    • 2008
  • Recently, several kinds of superconductivity applications are implemented and evaluated in the utility power networks. The protection system for HTS(High Temperature Superconducting) power devices safe operation has not been established yet. For the protection of the HTS apparatus, a better understanding of the quench properties against fault current and appropriate protection devices are required. In this study, an algorithm of protection system is developed with respect to HTS power cable. The protection system of HTS power cable was analyzed in the simulated power system. Results obtained from simulation will provide much more decisive data in order to design a certain superconducting power device, and can give a good information for the installation in power system.

  • PDF

A Characteristics of Large Current and Minimum Quench Energy on Prototype High-$T_c$ Superconducting Cable (Prototype 고온초전도 케이블의 최소 Quench에너지 및 대전류 특성)

  • Kim, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.236-242
    • /
    • 2000
  • NZP velocities were investigated on Ag sheathed multi filamentary Bi-2223 tape and direction type HTS cable. The critical current($I_c$) of Ag sheathed Bi-2223 tape and direction type HTS cable were 12 A, 63 A at 77 K, 0 T. NZP velocities of tape with two condition of DC and AC were almost same at each temperature. In case of DC, the NZP velocities of numerical analysis and experiment were almost same. NZP velocities of direction type HTS cable were 1.9-2.4 cm/sec. The result shows that the total transport current of spiral type HTS cable in $LN_2$ was 475[A], and transport current passed through almost the outer layer (2-layer). Also, AC transport losses in outer layer of HTS cable was proportion to $I^2$ and higher than losses of inner layer. And in case of $I_p=I_c$, calculated numerical loss density was concentrated on the edge of tape and most of loss density in cable was distributed outer layer more than inner layer.

  • PDF