• Title/Summary/Keyword: HTPB

Search Result 111, Processing Time 0.02 seconds

A Study on Combustion Characteristic of HTPB in Hybrid Rocket (하이브리드 로켓의 HTPB의 연소특성에 관한 연구)

  • Lee, Jung-Pyo;Cho, Sung-Bong;Kim, Soo-Jong;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gae;Choi, Sung-Han;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.203-207
    • /
    • 2007
  • In this study, the combustion characteristics of HTPB was studied in hybrid propulsion system. In this experiments HTPB was used as fuel, GOX was used as oxidizer. The mass flow rate of GOX was controlled by the several chocked orifices that have different diameter, and the oxidizer supply range was $13.8{\sim}42.7g/sec$. The experimental result of HTPB was compared with the other studies of HTPB, and the combustion performance of HTPB was analyzed with that of PE. As a result, the homing rate and efficiency of HTPB as fuel were better than that of PE in the same hybrid motor.

  • PDF

Improvement of Bonding Process and Bond Strength of HTPB Propellant/Liner using a Polymeric Curative (고분자 경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정 개선)

  • Jeong Byung-Hun;Seo Tae-Seok;Hong Myung-Pyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.413-416
    • /
    • 2005
  • The study has been performed on the improvement of bonding process and bond strength of HTPB propellant and liner using a polymeric curative. In case of liner using polymeric curative prepared from reaction of HTPB and TDI, migration of curative was decreased at bond interface. So EPDM insulation sanding and Desmodur RE coating process could be omitted in motor case preparation and bond strengths between the HTPB propellant and liner were increased. Also deterioration phenomena of bond strength could not be observed in accelerated aging test.

  • PDF

Improvement of Bonding Process and Bond Strength of HTPB Propellant/Liner using a Polymeric Curative (고분자 경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정 개선)

  • Jeong Byung-Hun;Seo Tae-Seok;Hong Myung-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.110-114
    • /
    • 2006
  • The study has been performed on the improvement of bonding process and bond strength of HTPB propellant and liner using a polymeric curative. In case of liner using polymeric curative prepared from reaction of HTPB and TDI, migration of curative was decreased at bond interface. So EPDM insulation sanding and Desmodur RE coating process could be omitted in motor case preparation and bond strengths between the HTPB propellant and liner were increased. Also deterioration phenomena of bond strength could not be observed in accelerated aging test.

Time to ignition analysis of AP/HTPB composite propellant (열 하중에 의한 AP/HTPB 복합추진제의 발화특성 모델링 연구)

  • Jung, Tae-Yong;Kim, Hyung-Won;Do, Young-Dae;Yoo, Ji-Chang;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.279-282
    • /
    • 2008
  • The AP/HTPB composite propellant is a common choice for solid rocket propulsion. The externally heated rocket via fires, for instance, can cause the energetic substance to ignite, and this may lead to a thermal runaway event marked by a severe explosion. In order to develop preventive measures to reduce the possibility of such accidents in propulsion systems, we investigate the ignition and initiation properties of AP/HTPB propellant.

  • PDF

HTPB Propellant Ageing Property and HFC Base Shelf-Life Evaluation Method (HTPB 추진제 노화 특성 및 HFC 기반 수명 평가 기법)

  • Cho, Wonho;Westerlund, M.;Ryoo, Baek-Neung;Jung, Gyoo-Dong;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.148-153
    • /
    • 2017
  • During natural ageing of HTPB propellant undergoes a series of slow physico-chemical degradation reactions. By using accelerated ageing conditions it is possible to simulate the material behaviour at different time-temperature conditions especially focused on the in-service conditions. Ageing behaviour of HTPB propellant were investigated using HFC(Micro-Heat Flow Calorimeter) is universal technique for measuring the rate of slow chemical and physical processes in long-term storage.

  • PDF

HTPB Propellant Ageing Property and HFC Base Shelf-life Evaluation Method (HTPB 추진제 노화 특성 및 HFC 기반 수명 평가 기법)

  • Cho, Wonho;Westerlund, M.;Ryoo, Baekneung;Jung, Gyoodong;Yoo, Jichang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.59-65
    • /
    • 2018
  • During natural aging, hydroxyl-terminated polybutadiene(HTPB) propellant undergoes a series of slow physico-chemical degradation reactions. By using accelerated ageing conditions it is possible to simulate the material behavior at different time-temperatures focusing on in-service conditions. Aging behaviors of HTPB propellant are investigated using HFC(heat flow calorimeter), a universal technique for measuring the rate of slow chemical and physical processes in long-term storage.

Impact Sensitivity of HTPE & HTPB Propellants using Friability Test (Friability 시험을 이용한 HTPE 및 HTPB 추진제의 충격 민감도)

  • Kim, Chang-Kee;Yoo, Ji-Chang;Min, Byoung-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • Hydroxyl terminated polyether(HTPE) propellants have been developed recently as possible replacements for HTPB/AP propellants currently used in a number of tactical rocker motor. As analyzing friability of HTPE and HTPB propellants in this study, the following results could be derived. The friability of the tested propellants depended on its binder contents, mechanical property, and burning rate. It was decreased as burning rate was lowered and toughness was increased.

Effect of HTPB Binder on Propellant (HTPB 바인더가 추진제에 미치는 영향)

  • Kim, Jeongeun;Ryu, Taeha;Hong, Myungpyo;Lee, Hyoungjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.504-507
    • /
    • 2017
  • The polybutadiene-based HTPB used as the propellant main binder influences the curing reaction rate of the binder and propellant depending on the synthetic batch. The properties of HTPB synthesized in different batches were analyzed and applied to propellants to evaluate the curing reaction rate and mechanical properties. Finally this reaction can also affect mechanical properties of propellant. And the results suggest that proper degree of curing reaction is necessary to obtain better mechanical properties of propellant.

  • PDF

Combustion Characteristics of HTPB/AP/Zr Propellant (HTPB/AP/Zr 추진제의 연소 특성)

  • Min Byoung-Sun;Hyun Hyung-Soo;Yim Yoo-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.61-65
    • /
    • 2005
  • In HTPB/AP propellants, zirconium(Zr) addition to formulation was shown to be less specific impulse than aluminum(Al) by the theoretical calculation because of the lower flame temperature and higher molecular weight of Zr oxide. It was found that the burning rate was faster with the finer size of Zr and the more content of $2{\mu}m$ Zr the faster burning rate is in HTPB/AP/Zr propellants caused by the more conduction energy transfer from Zr flame to the burning surface. Also the burning rate of HTPB/AP/Zr propellant could be reduced by addition of 150nm Al, depending on AP size distribution in formulation with Butacene and $1{\mu}m$ AP.

  • PDF

Combustion Characteristics of HTPB/AP/Zr Propellant (HTPB/AP/Zr 추진제의 연소 특성)

  • Min Byoung-Sun;Hyun Hyung-Soo;Yim Yoo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.9-16
    • /
    • 2005
  • Zirconium(Zr) addition to formulation of HTPB/AP propellants, was shown to be less specific impulse than aluminum(Al) by the theoretical calculation because of the lower flame temperature and higher molecular weight of Zr oxide. It was found that the burning rate was faster with the finer size of Zr and the more content of $2{\mu}m$ Zr the faster burning rate is in HTPB/AP/Zr propellants caused by the more conduction energy transfer from Zr flame to the burning surface. Also the burning rate of HTPB/AP/Zr propellant could be reduced by addition of 150nm Al, depending on AP size distribution in formulation with Butacene and $1{\mu}m$ AP.