This paper propose a statistical color model of background extraction base on Hue-Saturation-Value(HSV) color space, instead of the traditional RGB space, and shows that it provides a better use of the color information. HSV color space corresponds closely to the human perception of color and it has revealed more accuracy to distinguish shadows [3] [4]. The key feature of this segmentation method is based on processing hue component of color in HSV color space on image area. The HSV color model is used, its color components are efficiently analyzed and treated separately so that the proposed algorithm can adapt to different environmental illumination condition and shadows. Polar and linear statistical operations are used to calculate the background from the video frames. The experimental results show that the proposed background subtraction method can automatically segment video objects robustly and accurately in various illuminating and shadow environments.
현재 수입차 차량의 등록대수가 해를 거듭할수록 증가하는 추세이다. 그에 맞춰 수입차와 같은 고급 차량을 정비하기 위한 차량 정비 업체의 환경 개선이 지속적으로 이루어지고 있다. 본 논문에서는 정비 차량의 고객 신뢰도를 제공하기 위한 스마트 차량 관리 시스템을 구현하기 위해 HSV 색상모델 기반의 키 프레임 추출 기법을 제안한다. 수리 차량의 입고 시 차량 번호판 인식 프로세스를 통해 차량의 번호판을 자동으로 인식 후, 이를 기준으로 차량의 수리 이력 확인 및 수리 요청을 처리한다. 차량 수리 동영상을 토대로 차량 수리 키 프레임을 추출하여 사용자의 스마트폰으로 제공하는 서비스를 구현한다. 아울러 제안하는 기법을 스마트 차량 관리 시스템에 적용함으로써 서비스의 우수성을 검증한다. 마지막으로 키 프레임 추출 기법의 성능을 향상시키기 위해 RGB 색상을 HSV 색상으로 변환하여 처리한다. 그 결과 제안된 방법의 키 프레임 추출을 위한 성능 평가에서 기존의 RGB 색상모델보다 HSV 색상모델이 재현율 측면에서 약 30% 더 우수함을 확인하였다.
Journal of information and communication convergence engineering
/
제15권3호
/
pp.187-192
/
2017
Autonomous driving vehicle research demands complex road and lane understanding such as lane departure warning, adaptive cruise control, lane keeping and centering, lane change and turn assist, and driving under complex road conditions. A fast and robust road lane detection subsystem is a basic but important building block for this type of research. In this paper, we propose a method that performs road lane detection from black box input. The proposed system applies Random Sample Consensus to find the best model of road lanes passing through divided regions of the input image under HSV color model. HSV color model is chosen since it explicitly separates chromaticity and luminosity and the narrower hue distribution greatly assists in later segmentation of the frames by limiting color saturation. The implemented method was successful in lane detection on real world on-board testing, exhibiting 86.21% accuracy with 4.3% standard deviation in real time.
차량이 증가함에 따라 전방의 상황을 운전자에게 알려주기 위한 운전자 도움 시스템(Advanced Drivers Assistance System)과 같은 체계가 요구된다. 본 논문에서는 전방의 상황을 운전자에게 알려 주기 위한 기본과정으로 연속된 컬러 영상으로부터 영상처리만을 이용하여 전방의 차량과 차선을 검출하는 방법을 제안한다. 도로 전방의 상황은 차량이 많다고 하더라도 도로의 영역이 많은 부분을 차지하고 있으며, 차량이 있는 경우에 차량의 하단에 그림자와 같이 어두운 영역이 존재하는 점을 이용하여 전방의 차량을 검출한다. 그리고 차선은 그림자 영역의 반대 특징으로 횐색계열이라는 점을 이용하여 차선 정보를 추출한다. 이 방법은 도로가 혼잡하거나 도로상에 방향 표시가 있는 경우에도 좋은 결과를 보인다. 차량과 차선을 검출하는데는 HSV 컬러 모델에서 태도 성분과 명도 성분을 이용하여 후보점을 검출하고, 차량과 타선의 영역을 검출하며 에지 정보를 이용하여 차량의 영역을 결정한다. 그리고 검출된 차량 영역이 이전 프레임의 차량 영역과 같은 차량인지 알기 위해서는 HSV 성분과 위치 정보의 통계적 특징을 이용한다. 제안된 방식의 효과를 검증하기 위해 노트북 PC와 PC용 CCD 카메라로 도로에서의 영상을 촬영하고 차량 및 차선 검출 알고리즘을 적용한 처리 시간, 정확도 및 차량검지 결과를 보인다.
본 논문에서는 HSV(Hue Saturation Value) 색상 모델을 활용하여 녹조를 감시하는 시스템을 제안하였다. 제안된 시스템은 무선 네트워크에 접속된 라즈베리 파이 서버의 카메라를 통해 영상을 추출하고 이를 HSV 색상 모델을 이용하여 분석하였다. 분석된 정보를 XML 데이터로 제공하기 위해 라즈베리 파이에 웹 서버를 구현하였다. 또한, 스마트 디바이스를 통해서 XML 데이터를 확인하도록 모바일 앱을 개발하였다.
본 논문은 공간적 자동 객체 분할의 개념과 클러스터링 개념을 가진 웨이브렛 형태학 알고리즘을 제안하였다. 제안된 알고리즘을 이용하여 컬러 얼굴을 분할할 때 영상을 단순화하였으며, 또한 사용자의 조작 없이 실시간적으로 분할해 검출할 수 있도록 공간적 특성을 이용하였다. 이것은 HSV 컬러 모델을 이용하여 영상에서 잡음으로 간주되는 작은 부분을 제거하고, 얼굴영상 이외의 부분을 제거하기 위해 웨이브렛 형태학을 적용하였다. 본 논문은 웨이브렛 형태학 알고리즘과 형태학 알고리즘을 비교하였으며, 그리고 HSV 컬러 공간 모델을 적용한 영상에서 얼굴 객체 부분을 정확하게 검출함을 보였다.
본 논문은 기존 논문들에서 사용되었던 다양한 색상모델의 연기색상을 비교분석하여, 화재 영상감시 시스템의 연기 검출에 최적인 컬러모델을 제시하기 위한 컬러영상의 연기색상 분석에 대하여 기술한다. 각 표준 색상 모델에서의 연기색상과 비연기 색상간의 분리도 특성을 비교하기 위하여 히스토그램 교차 분석 기법을 사용하였다. 표준색상모델로는 RGB, YCbCr, CIE-Lab, HSV 컬러모델을 사용하였으며, 계산된 히스토그램 교차(Histogram Intersection)값이 작으면 연기와 비연기 영역분할 특성이 우수한 컬러모델이며 큰 값을 가지는 컬러모델에서는 연기분할 특성이 좋지 않다. 4개의 표준 컬러모델을 분석한 결과, RGB 색상모델과 HSV 색상모델이 각각 평균 히스토그램 교차 값이 0.14, 0.156 으로서 연기와 비연기 색상 분리도가 매우 우수하여 컬러영상의 색상기반 연기검출에 가장 최적이며 실용적인 컬러모델로 확인되었다.
Among the technologies for implementing autonomous vehicles, advanced driver assistance system is a key technology to support driver's safe driving. In the technology using the vision sensor having a high utility, various preprocessing methods are used prior to feature extraction for lane detection. However, in the existing methods, the unnecessary lane candidates such as cars, lawns, and road separator in the road area are false positive. In addition, there are cases where the lane candidate itself can not be extracted in the area under the overpass, the lane within the dark shadow, the center lane of yellow, and weak lane. In this paper, we propose an efficient preprocessing method using k-means clustering for image division and the HSV color model. When the proposed preprocessing method is applied, the true positive region is maximally maintained during the lane detection and many false positive regions are removed.
점묘화(stippling)는 펜과 잉크를 이용한 수많은 점들로 대상을 표현하는 예술 기법이다. 기존 비사실적 렌더링(Non-Photorealistic Rendering; NPR)에서 점묘화 연구들은 단색의 점들을 사용하여 그레이 영상이나 표면의 재질 등을 표현하였다. 본 논문에서는 2차원 영상의 컬러 정보를 해석하여 다양한 컬러의 점들로 표현하는 새로운 점묘화 기법이 제안된다. 제안된 방법은 입력 영상의 HSV 모델로부터 해석된 정보를 이용하여 컬러 가중치 함수(weight function)를 정의한다. 그리고 정의된 컬러 가중치 함수를 통해 점의 적절한 개수와 크기를 자동으로 계산한다 제안된 방법은 컬러 가중치가 적용된 펜로즈(Penrose) 샘플링을 사용하여 점을 분포하기 위해 소요되는 처리시간을 크게 단축하였다. 그리고 먼셀(Munsell)의 색상모델에 기반한 컬러 지터링(jittering)으로 실제 컬러 점묘화에 가까운 표현을 구현하였다 제안된 컬러 점묘화 기법은 처리속도가 매우 빠르고 다양한 컬러 점들로 영상을 표현하므로 애니메이션, 디지털 아트, 컴퓨터 그래픽 도구 등에 다양하게 활용될 수 있다.
본 논문은 영상에서 실시간으로 움직임 물체와 물체의 위치를 검출하는 방법을 제안한다. 첫째로 영상으로부터 2개의 연속된 프레임 차분을 통해 움직이는 물체를 추출하는 방법을 제안한다. 만약 두 프레임이 캡쳐되는 사이의 간격이 길다면, 실제 움직이는 물체의 꼬리 같은 거짓 움직임 물체를 생성한다. 두번째로 본 논문은 도플러 효과와 HSV 색상 모델을 사용하여 이 문제들을 해결하는 방법을 제안한다. 마지막으로 물체의 분할과 위치 설정은 상기의 단계에서 얻은 결과가 조합되어 완료된다. 제안된 방법은 99.2%의 검출율을 갖고, 과거에 제안된 다른 비슷한 방법들 보다는 비교적 빠른 속도를 갖는다. 알고리즘의 복잡성은 시스템의 속도에 직접적인 영향을 끼치기 때문에, 제안된 방법은 낮은 복잡성을 가져 실시간 움직임 검출을 위해 사용 될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.