• Title/Summary/Keyword: HSR 기법

Search Result 15, Processing Time 0.025 seconds

HSR estimation method of electromagnetic precipitation observation stations (전파강수관측소 HSR 추정 기법)

  • Lim, Sanghun;Yoon, Seong Sim;Cho, Yo Han;Jeong, Hyeon Gyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.377-377
    • /
    • 2021
  • 본 연구에서는 기존 대형 강우레이더 관측망에 대한 동해안 지역 관측공백 해소와 집중호우에 의한 재해예방을 목적으로 운영 중인 삼척과 울진 전파강수관측소의 강우추정을 위해 빔차폐 등을 고려한 HSR(Hybrid Surface Rainfall) 추정 기법을 소개하고 지상강우량과 비교 결과를 제시한다. 전파강수관측소의 HSR 추정 기법은 1) 자료 품질관리, 2) 고도별 자료의 병합, 3) 병합 자료 기반 분포형 비차등위상차 산정, 그리고 4) HSR 강우 추정 단계로 이루어진다. 품질관리 과정은 전파강수관측소의 관측자료 중 강우추정에 직접적으로 사용되는 반사도, 차등위상차의 품질을 관리하는 단계이다. 자료 병합 과정에서는 고도별로 품질관리된 반사도와 각 고도의 차등위상차의 레이별 차이를 병합한다. 그리고 병합된 반사도와 차등위상차의 레이별 차이를 이용하여 비차등위상차를 구한다. 마지막으로 산출된 비차등위상차를 이용하여 R-KDP 관계식을 이용하여 HSR을 산출한다 시험적용 결과 제안된 HSR 강우 추정 기법이 강한 강우가 발생한 지역의 강우강도를 잘 추정하는 것으로 확인되었다.

  • PDF

Application of the Radar Rainfall Estimates Using the Hybrid Scan Reflectivity Technique to the Hydrologic Model (Hybrid Scan Reflectivity 기법을 이용한 레이더 강우량의 수문모형 적용)

  • Lee, Jae-Kyoung;Lee, Min-Ho;Suk, Mi-Kyung;Park, Hye-Sook
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.867-878
    • /
    • 2014
  • Due to the nature of weather radar, blank areas occur due to impediments to observation, such as the ground clutter. Radar beam blockages have resulted in the underestimation rainfall amounts. To overcome these limitations, this study developed the Hybrid Scan Reflectivity (HSR) technique and compared the HSR results with existing methods. As a result, the HSR technique was able to estimate rainfalls in areas from which no reflectivity information was observable using existing methods. In case of estimating rainfalls depending on reflectivity scan techniques and beam-blockage/non beam-blockage, the HSR accuracy is superior. Furthermore, rainfall amounts derived from each method was inputted to the HEC-HMS to examine the accuracy of the flood simulations. The accuracy of the results using the HSR technique in contrast to the RAR calculation system and M-P relation was improved by 7% and 10%(based on correlation coefficients), and 18% and 34%(based on Nash-Sutcliffe Efficiency), on average, respectively. Therefore, it is advised that the HSR technique be utilized in the hydrology field to estimate flood discharge more accurately.

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

Accuracy Evaluation of Composite Hybrid Surface Rainfall (HSR) Using KMA Weather Radar Network (기상청 기상레이더 관측망을 이용한 합성 하이브리드 고도면 강우량(HSR)의 정확도 검증)

  • Lyu, Geunsu;Jung, Sung-Hwa;Oh, Young-a;Park, Hong-Mok;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.496-510
    • /
    • 2017
  • This study presents a new nationwide quantitative precipitation estimation (QPE) based on the hybrid surface rainfall (HSR) technique using the weather radar network of Korea Meteorological Administration (KMA). This new nationwide HSR is characterized by the synthesis of reflectivity at the hybrid surface that is not affected by ground clutter, beam blockage, non-meteorological echoes, and bright band. The nationwide HSR is classified into static (STATIC) and dynamic HSR (DYNAMIC) mosaic depending on employing a quality control process, which is based on the fuzzy logic approach for single-polarization radar and the spatial texture technique for dual-polarization radar. The STATIC and DYNAMIC were evaluated by comparing with official and operational radar rainfall mosaic (MOSAIC) of KMA for 10 rainfall events from May to October 2014. The correlation coefficients within the block region of STATIC, DYNAMIC and MOSAIC are 0.52, 0.78, and 0.69, respectively, and their mean relative errors are 34.08, 30.08, and 40.71%.

Evaluation of hydrological applicability for rainfall estimation algorithms of dual-polarization radar (이중편파 레이더의 강우 추정 알고리즘별 수문학적 적용성 평가)

  • Lee, Myungjin;Lee, Choongke;Yoo, Younghoon;Kwak, Jaewon;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Recently, many studies have been conducted to use the radar rainfall in hydrology. However, in the case of weather radar, the beam is blocked due to the limitation of the observation such as mountain effect, which causes underestimation of the radar rainfall. In this study, the radar rainfall was estimated using the Hybrid Sacn Reflectivity (HSR) technique for hydrological use of weather radar and the runoff analysis was performed using the GRM model which is a distributed rainfall-runoff model. As a result of performing the radar rainfall correction and runoff simulation for 5 rainfall events, the accuracy of the dual-polarization radar rainfall using the HSR technique (Q_H_KDP) was the highest with an error within 15% of the ground rainfall. In addition, the result of runoff simulation using Q_H_KDP also showed an accuracy of R2 of 0.9 or more, NRMSE of 1.5 or less and NSE of 0.5 or more. From this study, we examined the application of the dual-polarization radar and this results can be useful for studies related to the hydrological application of dual-polarization radar rainfall in the future.

Study on the Development of an Expressway Hard Shoulder Running Algorithm Using Reinforcement Learning (강화학습 기반 고속도로 갓길차로제 운영 알고리즘 개발 연구)

  • Harim Jeong;Sangmin Park;Sungkwan Kang;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.63-77
    • /
    • 2023
  • This study applies reinforcement learning to effectively operate expressway hard shoulder running (HSR). An HSR algorithm was developed, and its effectiveness was evaluated using the VISSIM microscopic simulation program. The simulation evaluated two aspects: mobility and safety. The DQN-based HSR algorithm found speed improvement of up to 26 km/h. Compared to the current method, the difference in the number of conflicts was not significant. Considering the results, a DQN-based HSR operation has a clear effect, and it is necessary to consider adjusting the current operational criteria.

Quantitative precipitation estimation of X-band radar using empirical relationship (경험적 관계식을 이용한 X밴드 레이더의 정량적 강우 추정)

  • Song, Jae In;Lim, Sanghun;Cho, Yo Han;Jeong, Hyeon Gyo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.679-686
    • /
    • 2022
  • As the occurrences of flash floods have increased due to climate change, faster and more accurate precipitation observation using X-band radar has become important. Therefore, the Ministry of Environment installed two dual-pol X-band radars at Samcheok and Uljin. The radar data used in this study were obtained from two different elevation angles and composed to reduce the shielding effect. To obtain quantitative rainfall, quality control (QC), KDP retrieval, and Hybrid Surface Rainfall (HSR) methods were sequentially applied. To improve the accuracy of the quantitative precipitation estimation (QPE) of the X-band radar, we retrieved parameters for the relationship between rainfall rate and specific differential phase, which is commonly called the R-KDP relationship; hence, an empirical approach was developed using multiple rain gauges for those two radars. The newly suggested relationship, R = 27.4K0.81DP, slightly increased the correlation coefficient by 1% more than the relationship suggested by the previous study. The root mean square error significantly decreased from 3.88 mm/hr to 3.68 mm/hr, and the bias of the estimated precipitation also decreased from -1.72 mm/hr to -0.92 mm/hr for overall cases, showing the improvement of the new method.

Application of statistical method for ride evaluation of high speed train (고속철도 승차감 평가에 통계적 기법의 적용)

  • Kim, Young-Guk;Park, Chan-Kyeoung;Ahn, Sung-Kwon;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2179-2184
    • /
    • 2008
  • The ride comfort is more important according to train speedup. Generally it is defined as the vehicle vibration. There are many studies on evaluation method of ride comfort for railway. But the ride comfort for Korean high speed train(HSR 350x) has been assessed by statistical method according to UIC 513R. In this paper, the ride indices, which are measured in the Korean high speed train, have been analyzed and reviewed by appling the statistical methodology such as t-test, variance analysis(ANOVA) and regression analysis.

  • PDF

A Study on the Outliers Detection in the Number of Railway Passengers for the Gyeongbu Line From Seoul to Major Cities Using a Time Series Outlier Detection Technique (시계열 이상치 탐지 기법을 활용한 경부선 주요도시 철도 승객수의 이상치 탐색 연구)

  • LEE, Jiseon;YOON, Yoonjin
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.6
    • /
    • pp.469-480
    • /
    • 2017
  • On April 1, 2004, KTX (Korea Train eXpress), the first HSR (High-Speed Rail) in Korea, was introduced to Gyeongbu Line. The introduction of the KTX service led to a change in the number of passengers for Gyeongbu Line. Previous studies have analyzed the pre and post-event changes of the intervening events by either simple statistics or intervention ARIMA analysis. However, the intervention ARIMA model has a limitation that several assumptions such as the occurrence time and the type of intervention events are necessary. To this end, this study analyzed the effects of intervention event on the number of passengers using the Gyeongbu line based on a time series outlier detection technique which can overcome limitations in the previous studies. The time series outlier detection technique can analyze the time, effect type and size of an intervention event without the assumption of the time and effect type of the intervention event. The data were collected from the Korea Transport Database (KTDB) for twelve years from 2003 to 2014 (144 months). The analysis results showed that the size of the influence type in the same intervention events was different across the major city routes, and the intervention event which could not be found by previous study methods was also found.

Method for Calculating the Line Capacity Using Computer Aided Simulation (시뮬레이션 기법에 의한 선로용량 산정방법)

  • Choi, Jong-Bin;Lee, Jinsun;Ki, Hyung-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.555-563
    • /
    • 2016
  • Line capacity of railways is a core criterion to decide maximum trips in accordance with traffic demand and a priority in railway investment to improve transportation capability. Particularly, because two operators will start revenue services in the HSR from mid-2016, the line capacity should be carefully calculated and controlled to avoid conflicts between the maximum number of KTXs, and the number needed to guarantee the effective competition of the operators. Meanwhile, there have been many arguments about calculating the line capacity, because this number is affected by the number of trips by train types, stopping pattern and dwell time in each station, journey time, crossing or passing, safety headway between trains, etc. To deal successfully with these kinds of problems, this study proposes a simulation method to calculate the line capacity that considers train operation according to the operator's service policies.