• Title/Summary/Keyword: HSI Color Space

Search Result 45, Processing Time 0.019 seconds

Hand gesture based a pet robot control (손 제스처 기반의 애완용 로봇 제어)

  • Park, Se-Hyun;Kim, Tae-Ui;Kwon, Kyung-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.4
    • /
    • pp.145-154
    • /
    • 2008
  • In this paper, we propose the pet robot control system using hand gesture recognition in image sequences acquired from a camera affixed to the pet robot. The proposed system consists of 4 steps; hand detection, feature extraction, gesture recognition and robot control. The hand region is first detected from the input images using the skin color model in HSI color space and connected component analysis. Next, the hand shape and motion features from the image sequences are extracted. Then we consider the hand shape for classification of meaning gestures. Thereafter the hand gesture is recognized by using HMMs (hidden markov models) which have the input as the quantized symbol sequence by the hand motion. Finally the pet robot is controlled by a order corresponding to the recognized hand gesture. We defined four commands of sit down, stand up, lie flat and shake hands for control of pet robot. And we show that user is able to control of pet robot through proposed system in the experiment.

  • PDF

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Color Gamut Mapping and Dithering for Ink-Jet Color Printing (잉크젯 칼라 프린팅을 위한 색역 사상과 디더링)

  • Lee, Chae-Soo;Kim, Kyeong-Man;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.137-146
    • /
    • 1998
  • Recently many devices print electronic images in a variety of ways. The reproduced color, however, is different from the original color because of the difference of hardware characteristics. To maintain device independent color, gamut mapping method is proposed. The proposed color gamut mapping uses nonlinear intensity mapping and clipping for saturation mapping on HSI color space. In the dithering operation, expanded nonlinear ordered dithering and modified error diffusion are proposed. The proposed ordered dithering uses expanded nonlinear quantization which considers overlapping phenomena of neighbored printing dots. In the modified error diffusion, quantization errors to be diffused are adjusted to improve both image blur and color change produced in the error diffusion. So, the printed image is similar to the image of monitor. Our results indicate that proposed algorithm can produce high quality image in the low bit color devices.

  • PDF

Traffic Sign Area Detection by using Color Rate and Distance Rate (컬러비와 거리비를 이용한 교통표지판 영역추출)

  • Kwak, Hyun-Wook;Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.681-688
    • /
    • 2002
  • This paper proposes a system detecting the area of traffic sign, which uses color rate as the information of colors, and corner point and distance rate as the information of morphology. In this system, a candidate area is extracted by performing dilation operation on the binary image made by the color rate of R, G, B components and by detecting corner point and center point through mask. The area of traffic sign with varied shapes is extracted by calculating the distance rate from center point, which is the information of morphology. The results of this experiment demonstrate that in this system which is invariable regardless of its size and location, it is possible to extract the exact area from varied traffic signs such as the shapes of triangle, circle, inverse triangle, and square as well as from the images at both day and night when brightness value is greatly different. Moreover, it demonstrates great accuracy and speed in processing.

A Robust Hand Recognition Method to Variations in Lighting (조명 변화에 안정적인 손 형태 인지 기술)

  • Choi, Yoo-Joo;Lee, Je-Sung;You, Hyo-Sun;Lee, Jung-Won;Cho, We-Duke
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.25-36
    • /
    • 2008
  • In this paper, we present a robust hand recognition approach to sudden illumination changes. The proposed approach constructs a background model with respect to hue and hue gradient in HSI color space and extracts a foreground hand region from an input image using the background subtraction method. Eighteen features are defined for a hand pose and multi-class SVM(Support Vector Machine) approach is applied to learn and classify hand poses based on eighteen features. The proposed approach robustly extracts the contour of a hand with variations in illumination by applying the hue gradient into the background subtraction. A hand pose is defined by two Eigen values which are normalized by the size of OBB(Object-Oriented Bounding Box), and sixteen feature values which represent the number of hand contour points included in each subrange of OBB. We compared the RGB-based background subtraction, hue-based background subtraction and the proposed approach with sudden illumination changes and proved the robustness of the proposed approach. In the experiment, we built a hand pose training model from 2,700 sample hand images of six subjects which represent nine numerical numbers from one to nine. Our implementation result shows 92.6% of successful recognition rate for 1,620 hand images with various lighting condition using the training model.