• Title/Summary/Keyword: HRTEM(high resolution transmission electron microscopy)

Search Result 122, Processing Time 0.023 seconds

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Preparation and Electrochemical Characteristics of Mg-Sn Nanoparticles as an Anode Material for Li-ion Batteries

  • Tulugan, Kelimu;Lei, Jun-Peng;Dong, Xin-Long;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.146-152
    • /
    • 2014
  • Mg-Sn nanoparticles were prepared by an arc-discharge method in a mixture atmosphere of argon and hydrogen gases. Phases, morphologies, and microstructures of the nanoparticles were investigated by means of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found that the intermetallic compound of $Mg_2Sn$ was generated and coexisted with metallic phases of Mg and Sn within nanoparticles. Basedon the model cell, the electrochemical properties were also explored by discharge-charge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. The initial capacity of the first cycle reached 430 mAh/g. Two visible plateaus at 0.2-0.3 and 0.5-0.75V were observed in the potential profiles, which can attributed to alloying/de-alloying reactions between Li and Mg2Sn, respectively.

Nanostructural Study of Apatite Film Biomimetically Grown in SBF (Simulated Body Fluid) (생체유사환경에서 성장된 아파타이트 층의 나노구조 연구)

  • Kim, Joung;Lee, Kap-Ho;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.690-696
    • /
    • 2005
  • The ultrastructure ore of a nanostructured apatite film nucleated from solution was studied to gain insights into that of bone minerals which is the most important constituent to sustain the strength of bones. Needle-shaped apatite crystal plates with a bimodal size distribution $(\~100\;to\;\~1000 nm)$ were randomly distributed and they were found to grow parallel to the c-axis ([002]), driven by the reduction of surface energy. Between these randomly distributed needle-shaped apatite crystals which are parallel to the film, apatite crystals (20-40nm) with the normal of the grains quasi-perpendicular to the c-axis were observed. These observations suggest that the apatite film is the interwoven structure of apatite crystals with the c-axis parallel and quasi-perpendicular to the fan. In some regions, amorphous calcium phosphate, which is a precursor of apatite, was also observed. In the amorphous phase, small crystalline particle with the size of 2-3 nm were observed. These particles were quite similar, in size and shape, to those observed in the femoral trabecular bone, suggesting the nucleation of apatites by a biomimetic process in vitro is similar to that in vivo.

RF and Optical properties of Graphene Oxide

  • Im, Ju-Hwan;Rani, J.R.;Yun, Hyeong-Seo;O, Ju-Yeong;Jeong, Yeong-Mo;Park, Hyeong-Gu;Jeon, Seong-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.68.1-68.1
    • /
    • 2012
  • The best part of graphene is - charge-carriers in it are mass less particles which move in near relativistic speeds. Comparing to other materials, electrons in graphene travel much faster - at speeds of $10^8cm/s$. A graphene sheet is pure enough to ensure that electrons can travel a fair distance before colliding. Electronic devices few nanometers long that would be able to transmit charge at breath taking speeds for a fraction of power compared to present day CMOS transistors. Many researches try to check a possibility to make it a perfect replacement for silicon based devices. Graphene has shown high potential to be used as interconnects in the field of high frequency electrical devices. With all those advantages of graphene, we demonstrate characteristics of electrical and optical properties of graphene such as the effect of graphene geometry on the microwave properties using the measurements of S-parameter in range of 500 MHz - 40 GHz at room temperature condition. We confirm that impedance and resistance decrease with increasing the number of graphene layer and w/L ratio. This result shows proper geometry of graphene to be used as high frequency interconnects. This study also presents the optical properties of graphene oxide (GO), which were deposited in different substrate, or influenced by oxygen plasma, were confirmed using different characterization techniques. 4-6 layers of the polycrystalline GO layers, which were confirmed by High resolution transmission electron microscopy (HRTEM) and electron diffraction analysis, were shown short range order of crystallization by the substrate as well as interlayer effect with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups on its layers. X-ray photoelectron Spectroscopy (XPS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation, and Fourier Transform Infrared spectroscopy (FTIR) and XPS analysis shows the changes in oxygen functional groups with nature of substrate. Moreover, the photoluminescent (PL) peak emission wavelength varies with substrate and the broad energy level distribution produces excitation dependent PL emission in a broad wavelength ranging from 400 to 650 nm. The structural and optical properties of oxygen plasma treated GO films for possible optoelectronic applications were also investigated using various characterization techniques. HRTEM and electron diffraction analysis confirmed that the oxygen plasma treatment results short range order crystallization in GO films with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups. In addition, Electron energy loss spectroscopy (EELS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation and XPS analysis shows that epoxy pairs convert to more stable C=O and O-C=O groups with oxygen plasma treatment. The broad energy level distribution resulting from the broad size distribution of the $sp^2$ clusters produces excitation dependent PL emission in a broad wavelength range from 400 to 650 nm. Our results suggest that substrate influenced, or oxygen treatment GO has higher potential for future optoelectronic devices by its various optical properties and visible PL emission.

  • PDF

Low-temperature Reduction of N2O by H2 over Pt/SiO2 Catalysts (Pt/SiO2 촉매상에서 H2에 의한 저온 N2O 제거반응)

  • Kim, Moon Hyeon;Kim, Dae Hwan
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.73-81
    • /
    • 2013
  • The present work has been devoted to the catalytic reduction of $N_2O$ by $H_2$ with $Pt/SiO_2$ catalysts at very low temperatures, such as $110^{\circ}C$, and their nanoparticle sizes have been determined by using $H_2-N_2O$ titration, X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM) measurements. A sample of 1.72% $Pt/SiO_2$, which had been prepared by an ion exchange method, consisted of almost atomic levels of Pt nanoparticles with 1.16 nm that are very consistent with the HRTEM measurements, while a $Pt/SiO_2$ catalyst possessing the same Pt amount via an incipient wetness technique did 13.5 nm particles as determined by the XRD measurements. These two catalysts showed a noticeable difference in the on-stream $deN_2O$ activity maintenance profiles at $110^{\circ}C$. This discrepancy was associated with the nanoparticle sizes, i.e., the $Pt/SiO_2$ catalyst with the smaller particle size was much more active for the $N_2O$ reduction. When repeated measurements of the $N_2O$ reduction with the 1.16 nm Pt catalyst at $110^{\circ}C$ were allowed, the catalyst deactivation occurred, depending somewhat on regeneration excursions.

Structure Evolution of Pt doped Amorphous ${V_2}{O_5}$Cathode Film for Thin Film Battery (박막 전지용 Pt 도핑 비정질 산화바나듐의 구조적 변화)

  • 김한기;전은정;옥영우;성태연;조원일;윤영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.751-757
    • /
    • 2000
  • The r.f. power effect for Pt doping is investigated on structural and electrochemical properties of amorphous vanadium oxide(V$_2$O$_{5}$) film, grown by direct current (d.c.) magnetron sputtering. Room temperature charge-discharge measurements based on a half-cell with a constant current clearly indicated that the Pt doping could improve the cyclibility of V$_2$O$_{5}$ cathode film. Using glancing angle x-ray diffraction(GXRD) and high-resolution transmission electron microscopy (HRTEM) analysis, we found that the Pt doping with 10W r.f. power induces more random amorphous structure than undoped V$_2$O$_{5}$ film. As the r.f. power of Pt target increases. large amount of Pt atoms incorporates into the amorphous V$_2$O$_{5}$ film and makes $\alpha$-PtO$_2$microcrystalline phase in the amorphous V$_2$O$_{5}$ matrix. These results suggest that the semiconducting $\alpha$-PtO$_2$ microcrystalline phase in amorphous matrix lead to a drastically faded cyclibility of 50W Pt doped V$_2$O$_{5}$ cathode film. Possible explanations are given to describe the Pt doping effect on cyclibillity of the amorphous V$_2$O$_{5}$ cathode film battery. film battery.

  • PDF

The Structural and Optical Properties of GaAs- SiO2 Composite Thin Films With Varying GaAs Nano-particle Size (GaAs 나노입자 크기에 따른 SiO2 혼합박막의 구조적 광학적 특성)

  • Lee, Seong-Hun;Kim, Won-Mok;Sin, Dong-Uk;Jo, Seong-Hun;Jeong, Byeong-Gi;Lee, Taek-Seong;Lee, Gyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.296-303
    • /
    • 2002
  • For potential application to quantum mechanical devices, nano-composite thin films, consisting of GaAs quantum dots dispersed in SiO$_2$ glass matrix, were fabricated and studied in terms of structural, chemical, and optical properties. In order to form crystalline GaAs quantum dots at room temperature, uniformly dispersed in $SiO_2$matrix, the composite films were made to consist of alternating layers of GaAs and $SiO_2$in the manner of a superlattice using RF magnetron sputter deposition. Among different film samples, nominal thickness of an individual GaAs layer was varied with a total GaAs volume fraction fixed. From images of High Resolution Transmission Electron Microscopy (HRTEM), the formation of GaAs quantum dots on SiO$_2$was shown to depend on GaAs nominal thickness. GaAs deposits were crystalline and GaAs compound-like chemically according to HRTEM and XPS analysis, respectively. From measurement of optical absorbance using a spectrophotometer, absorption edges were determined and compared among composite films of varying GaAs nominal thicknesses. A progressively larger shift of absorption edge was noticed toward a blue wavelength with decreasing GaAs nominal thickness, i.e. quantum dots size. Band gaps of the composite films were also determined from Tauc plots as well as from PL measurements, displaying a linear decrease with increasing GaAs nominal thickness.

Structural properties of GeSi/Si heterojunction compound semiconductor films by using SPE (SPE법을 통해 형성된 $Ge_xSi_{1-x}/Si$이종접합 화합물 반도체의 결정분석)

  • 안병열;서정훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.713-719
    • /
    • 2000
  • In order to Prepare the$Ge_xSi_{1-x}/Si$(111) heterosructure by solid phase epitaxy (SPE), about 1000A of Au and about 1000A Ge were sequentially deposited on the Si(111) substrate. The resulting Ge/Au/Si(111) samples were isochronically annealed in the high vacuum condition. The behaviors of Au and Ge during thermal annealing and the structural Properties of $Ge_xSi_{1-x}$ films were characterized by Auger electron spectroscopy (AES), X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM). The a-Ge/Au/Si(111) structure was converted to the Au/GeSi/Si(111) structure. Defects such as stacking faults, point defects and dislocations were found at the GeXSil-X(111) interface, but the film was grown epitaxially with the matching face relationship of $Ge_xSi_{1-x}/$(111)/Si(111). Twin crystals were also found in the $Ge_xSi_{1-x}/$(111) matrix.

  • PDF

Direct bonding of Si(100)/Si$_3$N$_4$∥Si (100) wafers using fast linear annealing method (선형열처리를 이용한 Si(100)/Si$_3$N$_4$∥Si (100) 기판쌍의 직접접합)

  • Lee, Young-Min;Song, Oh-Song;Lee, Sang-Hyun
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.427-430
    • /
    • 2001
  • We prepared 10cm-diameter Si(100)/500 $\AA$-Si$_3$N$_4$/Si(100) wafer Pairs adopting 500 $\AA$ -thick Si$_3$N$_4$layer as insulating layer between single crystal Si wafers. Si3N, is superior to conventional SiO$_2$ in insulating. We premated a p-type(100) Si wafer and 500 $\AA$ -thick LPCVD Si$_3$N$_4$∥Si (100) wafer in a class 100 clean room. The cremated wafers are separated in two groups. One group is treated to have hydrophobic surface and the other to have hydrophilic. We employed a FLA(fast linear annealing) bonder to enhance the bond strength of cremated wafers at the scan velocity of 0.1mm/sec with varying the heat input at the range of 400~1125W. We measured bonded area using a infrared camera and bonding strength by the razor blade crack opening method. We used high resolution transmission electron microscopy(HRTEM) to probe cross sectional view of bonded wafers. The bonded area of two groups was about 75%. The bonding strength of samples which have hydrophobic surface increased with heat input up to 1577mJ/$m^2$ However, bonding strength of samples which have hydrophilic surface was above 2000mJ/$m^2$regardless of heat input. The HRTEM results showed that the hydrophilic samples have about 25 $\AA$ -thick SiO layer between Si and Si$_3$N$_4$/Si and that maybe lead to increase of bonding strength.

  • PDF

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF