• Title/Summary/Keyword: HPOP(High-Precision Orbit Propagator)

Search Result 3, Processing Time 0.017 seconds

Performance Improvement of Real Time On-board Orbit Determination using High Precision Orbit Propagator (고정밀 섭동모델을 이용한 실시간 On-board 궤도 결정 성능 향상)

  • Kim, Eun-Hyouek;Lee, Byung-Hoon;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.781-788
    • /
    • 2016
  • In this paper, a real-time on-board orbit determination algorithm using the high precise orbit propagator is suggested and its performance is analyzed. Orbit determination algorithm is designed with the Extended Kalman Filter. And it utilizes the orbit calculated from the Pseudo-range as observed data. The performance of the on-board orbit determination method implemented in the GPS-12 receiver is demonstrated using the GNSS simulator. Orbit determination performance using high precise orbit propagator was analyzed in comparison to the orbit determination result using $J_2$ orbit propagator. The analysis result showed that position and velocity error are improved from 43.61 m($3{\sigma}$) to 23.86 m($3{\sigma}$) and from 0.159 m/s($3{\sigma}$) to 0.044 m/s($3{\sigma}$) respectively.

Real Time On-board Orbit Determination Performance Analysis of Low Earth Orbit Satellites (저궤도 위성의 실시간 On-board 궤도 결정 성능 분석)

  • Kim, Eun-Hyouek;Koh, Dong-Wook;Chung, Young-Suk;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • In this paper, a real time on-board orbit determination method using the extended kalman filter is suggested and its performance is analyzed in the environment of the orbit. Considering the limited on-board resources, the $J_2$ orbit propagate model and the GPS navigation solution are used for on-board orbit determination. The analysis result of the on-board orbit determination method implemented in DubaiSat-2 showed that position and velocity error are improved from 70.26 m to 26.25 m and from 3.6 m/s to 0.044 m/s, respectively when abnormal excursion errors is removed in the GPS navigation solution.

Development of a Software for Re-Entry Prediction of Space Objects for Space Situational Awareness (우주상황인식을 위한 인공우주물체 추락 예측 소프트웨어 개발)

  • Choi, Eun-Jung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • The high-level Space Situational Awareness (SSA) objective is to provide to the users dependable, accurate and timely information in order to support risk management on orbit and during re-entry and support safe and secure operation of space assets and related services. Therefore the risk assessment for the re-entry of space objects should be managed nationally. In this research, the Software for Re-Entry Prediction of space objects (SREP) was developed for national SSA system. In particular, the rate of change of the drag coefficient is estimated through a newly proposed Drag Scale Factor Estimation (DSFE), and is used for high-precision orbit propagator (HPOP) up to an altitude of 100 km to predict the re-entry time and position of the space object. The effectiveness of this re-entry prediction is shown through the re-entry time window and ground track of space objects falling in real events, Grace-1, Grace-2, Tiangong-1, and Chang Zheng-5B Rocket body. As a result, through analysis 12 hours before the final re-entry time, it is shown that the re-entry time window and crash time can be accurately predicted with an error of less than 20 minutes.