• 제목/요약/키워드: HPLC and GLC

검색결과 56건 처리시간 0.03초

콩나물의 잔류농약 분석 (Determination of Residual Pesticides in Bean Sprout)

  • 김정헌;김명희
    • 한국식품과학회지
    • /
    • 제21권2호
    • /
    • pp.224-228
    • /
    • 1989
  • 시판 콩나물중 농약 잔류량을 측정하기 위한 신속 간편한 분석방법을 검토하고 서울시내 소재 콩나물 제조업소 및 시중에서 1987년 1월부터 1988년 2월에 걸쳐 콩나물 541건, 발아콩 168건을 구득하여 콩나물 재배시 주로 사용되는 것으로 알려진 Topsin-M, Vitavax, Thiram, Captan을 HPLC와 GLC로 분석하였다. Topsin-M, Vitavax, Thiram은 HPLC로 동시에 신속하고 양호하게 분리할 수 있었으며, Captan은 GLC로 타 성분의 방해없이 깨끗이 분리할 수 있었다. 농약이 검출된 시료는 콩나물 105건(19.4%), 발아콩 44건(26.2%) 이었다. 농약 성분별로는 Topsin-M 115건 $(7.65{\pm}2.71ppm)$, Vitavax 20건 $(2.27{\pm}0.42ppm)$, Captan 25건 $(2.17{\pm}0.93ppm)$이었고 Thiram은 검출되지 않았으며 그중 Topsin-M과 Vitavax가 동시에 검출된 시료는 11건 이었다.

  • PDF

강남콩(Phaseolus vulgaris L.)의 Triglyceride 조성 (Triglyceride Composition of Kidney Bean (Phaseolus vulgaris L.))

  • 권용주;엄태붕;김충기;김상필;고석범;이태규;양희천
    • 한국식품과학회지
    • /
    • 제19권6호
    • /
    • pp.533-536
    • /
    • 1987
  • 강남콩 지방질중 triglyceride를 TLC로 분리한 후 HPLC에 의하여 PN별로 분획하였다. 각 PN별 triglyceride 분획은 다시 GLC에 의하여 acyl 탄소수별 조성을 분석하고 PN별 획분의 지방산 조성도 분석하였다. 이들 결과를 종합하여 triglyceride의 조성을 추정한 결과, 강남콩의 triglyceride는 총 14종이었으며 C18:2 C18:3 C18:3, C18:2 C18:2 C18:3, C18:3 C18:3 C18:3이 주성분으로 각각 전체 triglyceride의 26.6%, 18.5%, 14.9%이었다.

  • PDF

식물유의 Triglyceride 조성 1. 참기름의 Triglyceride 조성 (Triglyceride Composition of Some Vegetable Oils 1. Triglyceride Composition of Sesame Oil)

  • 박영호;화전준;소천천추
    • 한국수산과학회지
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 1981
  • 유지의 triglyceride 조성을 밝히기 위하여 비교적 구성지방산의 종류가 간단한 수종의 식물유를 시료로 하여 연구 검토하였는데, 본 보고에서는 참기름의 triglyceride 조성에 대하여 보고하기로 한다. 시료유를 Bio-Beads SX-2및 sephadex LH-20을 사용한 column chromatography에 의하여 triglyceride를 분리하고, 이것을 $\mu-Bondapak\;C_{18}$ column을 사용한 HPLC에 걸어 PN별로 triglyceride를 분획하여 분취하였다. 분취한 획분의 일부를 GLC에 걸어 acyl 탄소수별로 분획하고, 또 일부는methyl 화하여 GLC에 걸어 지방산조성을 분석하였다. 이들 결과로부터 triglyceride조성을 산정하였는데 산정할 수 있었는 triglyceride는 21종류이며, 그 중 주요 triglyceride는 $(2{\times}_{C18:1},\;C_{18:2};\;17.1\%),\;(C_{18:1},\;2{\times}C_{18:2};\;17.0\%),\;(3{\times}C18:2;17.0\%),$ $(3{\times}C_{18:1}; \;10.9\%),\;(3{\times}C_{18:2};\;9.6\%),$ $(C_{16:0},\;C_{18:1},\;C_{18:2};\;7.9\%),\;(C_{16:0},\;2{\times}C_{18:1};\;7.4\%),$ $(C_{16:0},\;2{\times}C_{18:2};\;6.8\%), (C_{18:0},\;C_{18:1},\;C_{18:2};\;3.1\%),$ $(2{\times}C_{18:0},\;C_{18:2};\;1.5\%),\;(C_{18:0},\;2{\times}C_{18:1};\;1.4\%),$ $(C_{16:0},\;C_{18:0},\;C_{18:1};\;1.3\%),\;(2{\times}C_{16:0},\;C_{18:1};\;1.2\%)$$(C_{16:0},\;C_{18:0},\;C_{18:2};\;1.0\%)$ 등이었다.

  • PDF

먹장어 지질의 주된 트리글리세리드의 지방산조성 (Fatty Acid Combination of Major Triglyceride in Hagfish Flesh Lipids)

  • 이응호;화전준;소천천추;대도민명;야중순삼구
    • 한국수산과학회지
    • /
    • 제17권4호
    • /
    • pp.291-298
    • /
    • 1984
  • 먹장어근육지질을 Biobeads SX-2 및 Sephadex LH-20을 이용한 칼럼크로마토그래피에 걸어 트리글리세리드(TG)획분을 분획하고 이 TG획분을 HPLC에 걸어 partition number별로 분획하였다. 그리고 partition number에 따른 TG조성, 총탄소수에 따른 TG조성 및 지방산조성을 분석한 자료를 computer처리하여 TG 구성지방산조합을 추정하였다. 총지질의 경우 포화산 $34.3\%$, monoene산 $43.1\%$, polyene산 $22.7\%$, 중요지방산은 $C_{16:0}(16.6\%),\;C_{16:1}(12.5\%)$$C_{18:1}(28.0\%)$였고, 극성지질은 포화산 $31.8\%$, monoene산 $30.1\%$, polyene산 $38.2\%$, 중요지방산은 $C_{16:0}(15.0\%),\;C_{18:0}(10.8\%),\;C_{18:1}(18.5\%),\;C_{22:5}(16.5\%)$$C_{22:6}(10.3\%)$, TG는 포화산 $29.8\%$, monoene산 $53.1\%$, polyene산 $17.2\%$, 중요지방산은 $C_{16:0}(17.1\%),\;C_{16:1}(10.1\%)$$C_{18:1}(38.4\%)$였다. 전반적으로 보면 $C_{18:1}$의 함량이 높은 것이 특징이었으며, $C_{18:0}/C_{18:1}$의 비는 0.1이였다. 극성지질은 phosphatidyl choline($65.5\%$)과 phosphatidyl ethanolamine($28.0\%$)으로 구성되어 있었다. GLC 자료 및 HPLC에서 얻은 partition number를 사용하여 먹장어 지질 TG의 구성지방산조합을 computer를 이용하여 추정한 결과 이중결합을 1개, 2개, 3개, 4개, 5개, 6개, 7개 가지고, 총탄소수는 46에서 58의 범위내에 분포하며, $0.1\%$ 이상 함유될 가능성이 있는 TG는 44종류로 추정되었으며 그 합계는 69.75였고, 중요한 TG는 ($1{\times}C_{16:0},\;2{\times}C_{18:1};\;13.5\%$), ($1{\times}C_{16:0},\;1{\times}C_{18:0},\;1{\times}C_{18:1};\;7.2\%$), ($1{\times}C_{16:1},\;2{\times}C_{18:1};\;5.4\%$), ($2{\times}C_{16:0},\;1{\times}C_{22:5};\;5.2\%$), ($1{\times}C_{14:0},\;2{\times}C_{18:1};\;4.5\%$), ($2{\times}C_{18:1},\;1{\times}C_{22:5};\;3.6\%$), ($1{\times}C_{14:0},\;1{\times}C_{18:0},\;1{\times}C_{18:1};\;2.7\%$) 및 ($1{\times}C_{14:0},\;1{\times}C_{16:0},\;1{\times}C_{18:2};\;2.2\%$)등이었다. 이들 TG중 $C_{18:1}$을 1분자이상 함유하는 것의 조함비의 합계는 $52.4\%$, 2분자이상 함유하는 것은 $35.9\%$였다.

  • PDF

Development of a Label-Free LC-MS/MS-Based Glucosylceramide Synthase Assay and Its Application to Inhibitors Screening for Ceramide-Related Diseases

  • Fu, Zhicheng;Yun, So Yoon;Won, Jong Hoon;Back, Moon Jung;Jang, Ji Min;Ha, Hae Chan;Lee, Hae Kyung;Shin, In Chul;Kim, Ju Yeun;Kim, Hee Soo;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.193-200
    • /
    • 2019
  • Ceramide metabolism is known to be an essential etiology for various diseases, such as atopic dermatitis and Gaucher disease. Glucosylceramide synthase (GCS) is a key enzyme for the synthesis of glucosylceramide (GlcCer), which is a main ceramide metabolism pathway in mammalian cells. In this article, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to determine GCS activity using synthetic non-natural sphingolipid C8-ceramide as a substrate. The reaction products, C8-GlcCer for GCS, could be separated on a C18 column by reverse-phase high-performance liquid chromatography (HPLC). Quantification was conducted using the multiple reaction monitoring (MRM) mode to monitor the precursor-to-product ion transitions of m/z $588.6{\rightarrow}264.4$ for C8-GlcCer at positive ionization mode. The calibration curve was established over the range of 0.625-160 ng/mL, and the correlation coefficient was larger than 0.999. This method was successfully applied to detect GCS in the human hepatocellular carcinoma cell line (HepG2 cells) and mouse peripheral blood mononuclear cells. We also evaluated the inhibition degree of a known GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) on GCS enzymatic activity and proved that this method could be successfully applied to GCS inhibitor screening of preventive and therapeutic drugs for ceramide metabolism diseases, such as atopic dermatitis and Gaucher disease.

Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848

  • Liu, Chun-Ying;Zhou, Rui-Xin;Sun, Chang-Kai;Jin, Ying-Hua;Yu, Hong-Shan;Zhang, Tian-Yang;Xu, Long-Quan;Jin, Feng-Xie
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.221-229
    • /
    • 2015
  • Background: Minor ginsenosides, those having low content in ginseng, have higher pharmacological activities. To obtain minor ginsenosides, the biotransformation of American ginseng protopanaxadiol (PPD)-ginsenoside was studied using special ginsenosidase type-I from Aspergillus niger g.848. Methods: DEAE (diethylaminoethyl)-cellulose and polyacrylamide gel electrophoresis were used in enzyme purification, thin-layer chromatography and high performance liquid chromatography (HPLC) were used in enzyme hydrolysis and kinetics; crude enzyme was used in minor ginsenoside preparation from PPD-ginsenoside; the products were separated with silica-gel-column, and recognized by HPLC and NMR (Nuclear Magnetic Resonance). Results: The enzyme molecular weight was 75 kDa; the enzyme firstly hydrolyzed the C-20 position 20-O-${\beta}$-D-Glc of ginsenoside Rb1, then the C-3 position 3-O-${\beta}$-D-Glc with the pathway $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$. However, the enzyme firstly hydrolyzed C-3 position 3-O-${\beta}$-D-Glc of ginsenoside Rb2 and Rc, finally hydrolyzed 20-O-L-Ara with the pathway $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$, and $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$. According to enzyme kinetics, $K_m$ and $V_{max}$ of Michaelis-Menten equation, the enzyme reaction velocities on ginsenosides were Rb1 > Rb2 > Rc > Rd. However, the pure enzyme yield was only 3.1%, so crude enzyme was used for minor ginsenoside preparation. When the crude enzyme was reacted in 3% American ginseng PPD-ginsenoside (containing Rb1, Rb2, Rc, and Rd) at $45^{\circ}C$ and pH 5.0 for 18 h, the main products were minor ginsenosides C-Mc, C-Y, F2, and C-K; average molar yields were 43.7% for C-Mc from Rc, 42.4% for C-Y from Rb2, and 69.5% for F2 and C-K from Rb1 and Rd. Conclusion: Four monomer minor ginsenosides were successfully produced (at low-cost) from the PPD-ginsenosides using crude enzyme.

약용식물(藥用植物)(음나무, 오가피)로부터 생리활성물질(生理活性物質) 검정(檢定) (Identification of Biologically Active Substances from Medicinal Plants)

  • 이인중;김길웅
    • 한국잡초학회지
    • /
    • 제7권3호
    • /
    • pp.289-298
    • /
    • 1987
  • 약용식물(藥用植物)을 대상(對象)으로 생리활성(生理活性)을 지닌 phenolic산(酸)과 지방산(脂肪酸) 및 유기산(有機酸) 등(等)을 조사(調査)한 결과(結果)는 다음과 같다. 음나무와 오가피의 EtOH 추출물(抽出物)은 상치의 발아(發芽)를 강하게 억제(抑制)하는 생리활성물질(生理活性物質)을 함유(含有)하고 있었다. 음나무와 오가피로부터 GLC에 의해 동정(同定)된 phenolic 산(酸)은 protocatechuic 산(酸) 외(外) 11종(種)이었으며 총(總) phenolic 산(酸)의 함량(含量)은 음나무가 1.7971mg/g, 오가피가 0.9567mg/g 이었다. HPLC로 검정(檢定)된 polyphenols은 ncochlorogenic, chlorogenic, scopoletin, rutin, kaempferolglycoside 였으며 chlorogenic 산(酸)의 함량(含量)이 음나무 23.7ppm, 오가피 13.0ppm으로 가장 많았다. 음나무는 지방산(脂肪酸)이 5.26mg/g, 유기산(有機酸)이 27.69mg/g, 오가피는 지방산(脂肪酸)이 3.22mg/g, 유기산(有機酸)이 9.80mg/g 함유(含有)되어 있었으며 음나무가 오가피보다 많은 지방산(脂肪酸)과 유기산(有機酸)을 함유(含有)하고 있었다. 지방산(脂肪酸) 가운데는 linoleic 산(酸)이 전체(全體)의 50% 이상(以上)을, 유기산(有機酸) 가운데는 oxalic 산(酸)이 80% 이상(以上)의 비율(比率)로 함유(含有)되어 있었다.

  • PDF

식물유(植物油)의 Triglyceride조성(組成)에 관한 연구(硏究) -제3보(第3報) : 올리브기름의 Triglyceride조성(組成)- (Studies on the Triglyceride Composition of some Vegetable Oils -III. Triglyceride Composition of Olive Oil-)

  • 최수안;박영호
    • 한국식품과학회지
    • /
    • 제15권1호
    • /
    • pp.66-69
    • /
    • 1983
  • 올리브기름의 트리-글리세리드조성(組成)을 구명(究明)하기 위하여, 시료유(試料油)를 TLC에 의하여, 트리-글리세리드를 분리(分離)하고, 분리(分離)한 트리-글리세리드 HPLC에 의하여 PN별(別)로 4군(群)으로 분획(分劃)하였으며, 각 획분(劃分)을 분취(分取)하여 GLC에 의하여 acyl탄소수별(炭素數別)로 분획(分劃)하였다. 또 PN별(別) 획분(劃分)은 GLC로 지방산조성(脂肪酸組成)을 분석(分析)하였다. 올리브기름에 있어서 주(主)로 PN48에 acyl탄소(炭素) C-52 및 C-54가 높은 비율(比率)로 함유되어 있으며, 지방산(脂肪酸)은 C18 : 1 및 C18 : 2가 주요성분(主要成分)으로 구성(構成)되여 있었다. 시료유(試料油)의 주요(主要) 트리-글리세리드를 들면 다음과 같다. $(3{\times}C18:1;50.46%),\;(1{\times}C16:0,\;2{\times}C18:1;23.51%)$ $(2{\times}C18:1,\;1{\times}C18:2;5.48%),\;(1{\times}C18:0,\;2{\times}C18:1;4.55%)$ $(1{\times}C16:0,\;1{\times}C18:1,\;1{\times}C18:2;2.94%)\;(2{\times}C16:0,\;1{\times}C18:1;2.35%)$ $(1{\times}C16:1,\;2{\times}C18:1;2.21%),\;(1{\times}C18:1,\;2{\times}C18:2;1.06%)$, 및 $(1{\times}C14:0,\;2{\times}C18:1;1.03%)$이였다.

  • PDF

참나무 크라프트 리그닌과 볏짚 아세토솔브 리그닌의 열-화학적 분해에 의한 방향족(Aromatic)과 지방족(Aliphatic)화합물의 합성 (Synthesis of Aromatic and Aliphatic Compound from Kraft Oak Lignin and Acetosolve Straw Lignin by Thermochemical Liquefaction)

  • 이병근
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 1997
  • Kraft oak lignin and ricestraw lignin from acetosolve pulping were dissolved in 50/50 mixture of tetralin/m-cresol solvent. The dissolved lignin was reacted in the pressurized autoclave which was operating at $350{\sim}500^{\circ}C$ of reaction temperature and 10~20 atms of reaction pressure respectively_Hydrogen pressure of 60~80kg/$cm^2$ was exercising into the pressurized autoclave reactor to create thermochemical hydrogenolysis reaction. It was identified by GLC, GC-MS and HPLC that the alkyl-aryl-${\beta}$-O-4 ether bond of lignin was cleaved and degraded into various smaller molecules of aromatic compound such as phenols and cresols under the reaction conditions around $300^{\circ}C$ and 10 atms of reaction temoerature and pressure. Hydrogenolysis reaction of lignin compound which was done above $500^{\circ}C$ of reaction temperature and 20 atms of reaction pressure showed that the amount of aromatic compound such as phenols and cresols degraded from reactant lignin was decreasing with newly present and increasing water out of product mixtures. It was supposed that new aliphatic compound of high molecular weight hydrocarbon is composed due to higher reaction temperature and pressure of hydrogenolysis reaction such as $500^{\circ}C$ and 20 atms, even though it was almost impossible, to identify what kind of degraded products it was by HPLC.

  • PDF

1990년 제23회 학술발표회 논문초록 (Immunochemical Determination of Plant Constituents)

  • 성철기
    • 한국연초학회지
    • /
    • 제12권1호
    • /
    • pp.29-38
    • /
    • 1990
  • Until relatively recently plant scientists have made little use of immunological techniques. Now, however, more and more researchers are discovering the powder of these techniques for the screening of immunomodulators and for the detection, quantitative determination and localization of compounds in plant materials. Especially, the recent developments in the fields of plant biotechnology and plant genetic engineering make it even more important for forkers in the plant sciences to become acquainted with the more sophisticated methods. The possible methods include onestep purification of antigens, visualization in situ by immunocytochemis try and on polyacrylam ids gel s by ni trocellulose Western blotting and quantification by various immunoassay. Among them, in this reviews, the quantitative determination methods are to be reviewed. There are several kinds of methods for the quantitative determination of plant constituents such as colorimetry, TLC, GLC, DCC, UV derivatization, densitometry and HPLC. When the complexity of plant constituents is considered. densitometry and HPLC have many advantages in sensitivity and separation ability. After a 11 some advarltages of two methods meritiorled above, all of these methods have many disadvantages and inconveniences. Previous purification for the application of all these methods make them less sensitive and more tedious. Immunoassay can solve these problems in part. But immunoassay also has some limitations. Specificity of immunoassay, contrary, can be considered to be disadvantages. Including this the advantages and disadvantages of immunoassay are to be discussed.

  • PDF