• Title/Summary/Keyword: HPLC and GLC

Search Result 56, Processing Time 0.022 seconds

Triglyceride Composition of Perilla Oil (들깨기름의 Triglyceride 조성(組成)에 관한 연구)

  • Park, Yeung-Ho;Kim, Dong-Soo;Chun, Suck-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.164-169
    • /
    • 1983
  • The triglyceride composition of perilla oil was investigated by high performance liquid chromatography (HPLC) in combination with gas liquid chromatography (GLC). The triglycerides were separated from perilla oil by thin layer chromatography (TLC), and fractionated into five groups on the basis of their partition numbers by reverse phase HPLC on a column packed with ${\mu}-Bondapak\;C_{18}$ using methanol-chloroform mixture as a solvent. Each of these collected fractions gave one to three peaks in the GLC chromatograms according to the acyl carbon number of the triglyceride, and fatty acid composition of the triglyceride was also analyzed by GLC. The results indicate that the perilla oil consists of fifteen kinds of triglycerides, and the major triglycerides in perilla oil were as follows: 68.0% of $(C_{18:3},\;C_{18:3},\;C_{18:3})$, 6.7% of $(C_{18:2},\;C_{18:3},\;C_{18:3})$, 5.9% of $(C_{18:1},\;C_{18:3},\;C_{18:3})$, 4.3% of $(C_{16:0},\;C_{18:3},\;C_{18:3})$, 3.8% of $(C_{18:1},\;C_{18:2},\;C_{18:3})$, 3.2% of $(C_{18:1},\;C_{18:1},\;C_{18:3})$, 2.0% of $(C_{16:0},\;C_{18:2},\;C_{18:3})$, 1.5% of ($C_{18:2},\;C_{18:2},\;C_{18:3})$, 1.0% of $(C_{16:0},\;C_{18:1},\;C_{18:3})$.

  • PDF

Microbial Production of N-Acetylglucosamine by Arthrobacter nicotianae (Arthrobacter nicotianae에 의한 N-acetylglucosamine의 생산)

  • Chang, Ji-Yoon;Kim, In-Cheol;Chang, Hae-Choon
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1188-1192
    • /
    • 2003
  • Chitinase producing bacteria, Arthrobacter nicotianae CH4 and A. nicotianae CH13, were isolated from small crabs by an enrichment culture using chitin as the sole carbon source. Crude chitinases from the two isolated strains, A. nicotianae CH4 and A. nicotianae CH13, were stable in the pH range of $3.0{\sim}9.0$ and in the temperature range of $20{\sim}60^{\circ}C$. The reducing sugar $(GlcNAc)_1$, or $(GlcNAc)_4$, corresponding to over 98% of the enzyme reaction products, was obtained. The production of functional $(GlcNAc)_1$ and $(GlcNAc)_4$ from A. nicotianae CH13 and A. nicotianae CH4, respectively, from the chitinases was useful. The chitinase system of A. nicotianae CH13 was supposed to be endo- and exo-chitinase, and N-acetylglucosaminidase.

Triglyceride Compositions of Peach Kernel and Apricot Kernel Oil (복숭아씨 및 살구씨기름의 triglyceride조성(組成))

  • Park, Yeung-Ho;Park, Jin-Woo;Kim, Tae-Soo;Choi, Su-An;Chun, Seok-Jo
    • Applied Biological Chemistry
    • /
    • v.27 no.4
    • /
    • pp.278-284
    • /
    • 1984
  • The triglyceride compositions of peach kernel and apricot kernel oil have been investigated by a combination of high performance liquid chromatography (HPLC) and gas liquid chromatography(GLC). The triglycerides of peach kernel and apricot kernel oil were first separated by thin layer chromatography(TLC), and fractionated on the basis of their partition number(PN) by HPLC on a C-18 ${\mu}-Bondapak$ column with methanol-chloroform solvent mixture. Each of these fractionated groups was purely collected and analyzed by GLC according to acyl carbon number(CN) of triglyceride. Also the fatty acid compositions of these triglycerides were determined by GLC. From the consecutive analyses of these three chromatography techniques, the possible triglyceride compositions of peach kernel and apricot kernel oil were combinated into fifteen and thirteen kinds of triglycerides, respectively. The major triglycerides of peach ternel oil were those of $(3{\times}C_{18:1}\;30.9%)$, $(2{\times}C_{18:1},\;C_{18:2},\;21.2%)$, $(C_{18:1},\;2{\times}C_{18:2}\;10.6%)$, $(3{\times}C_{18:2}\;3.8%)$, $(C_{18:0},\;2{\times}C_{18:1},\;1.8%)$, $(C_{16:0},\;C_{18:1},\;C_{18:2},\;1.5%)$, $(C_{18:0},\;C_{18:1},\;C_{18:2},\;1.1%)$ and those of apricot kernel oil were $(3{\times}C_{18:1},\;39.5%)$, $(2{\times}C_{18:1},\;C_{18:2},\;24.5%)$, $(C_{18:0},\;2{\times}C_{18:2},\;14.2%)$, $(3{\times}C_{18:2},\;2.0%)$.

  • PDF

Triacylglycerol composition of dry peas (Pisum sativum L.) (완두의 트리아실글리세롤 조성)

  • Kwon, Yong-Ju;Yoo, Jae-Soo;Whang, Young-Tae;Kim, Choong-Ki;Song, Geun-Seoup
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.81-85
    • /
    • 1991
  • Lipids in dry peas were extracted by the mixture of chloroform-methanol-water, and from the extracted lipids triacylglycerols(TG) were separated by thin layer chromatography. TG were separated into different fractions according to partition numbers by HPLC. Each of these collected fractions was analyzed on the basis of acyl carbon number by GLC, and their fatty acid compositions were also analyzed by GLC. From these results, the possible fatty acid combinations of TG in dry peas were estimated to be thirty three kinds and the major kinds were as follows $C_{16:0}C_{18:2}C_{18:2}(13.4%),\;C_{18:1}C_{18:2}C_{18:3}(9.3%),\;C_{18:1}C_{18:2}C_{18:2}(9.2%),\;C_{18:2}C_{18:2}C_{18:2}(8.1%),\;C_{18:2}C_{18:2}C_{18:3}(6.4%),\;and\;C_{18:0}C_{18:1}C_{18:2}(5.4%)$.

  • PDF

Purification and characterization of the chitinase from Bacillus subtilis JK-56 (Bacillus subtilis JK-56이 생산하는 chitinase isozyme의 정제와 특성 규명)

  • 전홍기;김낙원;정영기
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • Chitin, a $\beta$-1,4 polymer of N-acetyl-D-glucosamine, is one of the most abundant organic compounds in nature. Chitinase (EC 3.2.1.14) is an enzyme that degrades chitin to chito-oligosaccharides, diacetyl rhitobiose and N-acetyl-D-glucosamine. An extracellular chitinase-producing bacterial strain was isolated from soil and named to as Bacillus subtilis JK-56. Optimum culture condition of B. subtilis JK-56 for the production of chitinase was 1% chitin, 0.5% polypepton, 0.1% KCl, 0.05% MnS $O_4$.4$H_2O$, 37$^{\circ}C$, initial pH 7.0 and 40 hour culture time. When B. subtilis JK-56 was grown in the optimum medium, one major active band and two minor active bands were detected by native-PAGE and active staining of the gel. Among them, the major band was purified from the culture supernatant by 70% ammonium sulfate precipitation and native-PAGE with BIO-RAD Model 491 Prep-Cell and named as Chi-56A. Its molecular weight was estimated to be 53kDa monomer and the isoelectric point (pI) was pH 4.3. The pH and temperature for the optimum activity of Chi-56A were pH 6.0 and $65^{\circ}C$, respectively. Chi-56A was stable up to $65^{\circ}C$ and in alkaline region. Its $K_{m}$ value for colloidal chitin was 17.33g/L. HPLC analysis of the reaction products confirmed that Chi-56A was an exo type chitinase.e.

Studies on the Triglyceride Composition of Some Vegetable Oils -II. Triglyceride Composition of Corn Oil- (식물유(植物油)의 Triglyceride 조성(組成)에 관한 연구(硏究) -제(第) 2 보(報) : 옥수수유(油)의 triglyceride 조성(組成)-)

  • Choi, Su-An;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.226-231
    • /
    • 1982
  • In order to define triglyceride compositions in fat and oil triglycerides were separated by thin layer chromatography (TLC) from corn oil, and the separated triglycerides were graduated according to each partition number(PN) by high performance liquid chromatography (HPLC) using column of ${\mu}-Bondapack\;C_{18}$ and each graduation was graduated again according to acylcarbon number by gas liquid chromatography(GLC). Fatty acid compositions were analyzed by GLC after their graduation were methylated in according to PN. The triglyceride compositions were estimated by synthesizing the above three results. The estimated triglycerides consisted of 36 kinds in corn oil. The major triglyceride compositions of sample oil were as follows: 21.5%$(C_{18:2},\;C_{18:2},\;C_{18:1})$, 17.4%$(C_{18:1},\;C_{18:2},\;C_{18:1})$, 15.4%$(C_{18:1},\;C_{18:2},\;C_{16:0})$, 11.1%$(C_{16:0},\;C_{18:2},\;C_{18:2})$, 9.0%$(C_{18:1},\;C_{18:1},\;C_{18:1})$, 8.0%$(C_{18:2},\;C_18:2},\;C_{18:2})$, 5.7%$(C_{18:1},\;C_{18:1},\;C_{16:0})$, 2.2%$(C_{16:0},\;C_{16:0},\;C_{18:2})$, 1.6%$(C_{18:2},\;C_{18:2},\;C_{18:2})$, 1.1%$C_{18:2},\;C_{18:0},\;C_{16:0})$, 1.1%$(C_{16:0},\;C_{16:0},\;C_{18:1})$.

  • PDF

Triglyceride Composition of Walnut Oil (호도기름의 Triglyceride 조성(組成)에 관한 연구(硏究))

  • Chun, Seok-Jo;Park, Yeung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.3
    • /
    • pp.263-267
    • /
    • 1984
  • The present study was conducted to elucidate the triglyceride composition of walnut oil. The triglycerides were separated by thin layer chromatography (TLC) and fractionated on the basis of partition numbers by reverse phase high performance liquid chromatography (HPLC) on a column packed with $\mu$-bondapak $C_{18}$ using methanol-chloroform mixture as a solvent system. Each of these collected fractions was fractionated again on the basis of acyl carbon number of triglyceride by gas liquid chromatography (GLC). The fatty acid composition of triglycerides for each partition numbered group was also analyzed by GLC. From the results, it was found that walnut oil consists of ten kinds of triglycerides, and the patterns of major ones in walnut oil were as follows: 53.3% of $(C_{18:2},\;C_{18:2},\;C_{18:2})$, 10.1% of $(C_{18:1},\;C_{18:2},\;C_{18:2})$, 5.4% of $(C_{18:1},\;C_{18:1},\;C_{18:2})$, 4.3% of $(C_{18:1},\;C_{18:2},\;C_{18:3})$, 3.9% of $(C_{18:0},\;C_{18:2},\;C_{18:2})$, 2.0% of $(C_{18:0},\;C_{18:1},\;C_{18:2})$, 1.8% of $(C_{18:0},\;C_{18:2},\;C_{18:2})$.

  • PDF

Studies on the Triglyceride Composition of Some Vegetable Oils -IV. Triglyceride Composition of Rice Bran Oil- (식물유(植物油)의 Triglyceride조성(組成)에 관한 연구(硏究) -제(第) 4 보(報) : 쌀겨기름의 Triglyceride조성(組成)-)

  • Choi, Su-An;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.108-111
    • /
    • 1983
  • High performance liquid chromatography (HPLC) was applied to the analysis of triglycerides of rice bran oil. The triglycerides were clearly separated in five peaks by HPLC on a column packed with ${\mu}-Bondapack$ C18 using methanol-chloroform mixture as a solvent. Compositions of the triglyceride and fatty acid of the fraction was also analyzed by gas liquid chromatography (GLC). Each of these collected fractions gave three to four peaks in the GLC chromatograms according to the carbon number of the triglyceride. The fitty acid compositions of these triglycerides were mainly composed of C16:0, C18:1 and C18:2 fatty acids. The major triglycerides of the rice bran oil were found to be those of (C16:0, C18:1, C18:2;16.64%), $(2{\times}C18:1,\;C18:2;16.18%)$, $(3{\times}C18:1;13.7%)$, $(C16:0,\;2{\times}C18:1;12.77%)$,$(C18:1,\;2{\times}C18:2;9.16%)$ and $(C16:0,\;2{\times}C18:2;6.42%)$

  • PDF

Studies on the Triglyceride Composition of Some Vegetable Oils -I. Triglyceride Composition of Cotton Seed Oil- (식물유(植物油)의 Triglyceride 조성(組成)에 관한 연구(硏究) -제(第) 1 보(報) : 면실유(棉實油)의 Triglyceride 조성(組成)-)

  • Choi, Su-An;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.219-225
    • /
    • 1982
  • Triglycerides of cottonseed oil were separated by thin layer chromatography (TLC), and fractionated by high-performance liquid chromatography (HPLC) on the basis of partition numbers. From each fraction, it was fractionated again on the basis of acyl carbon numbers using gas liquid chromatography (GLC). The fatty acids of triglyceride for each partition number group were analyzed by GLC. From, these results, triglyceride constituents of cotton seed oil were estimated to be 37 kinds of triglycerides. The major triglycerides and their contents in cotton seed oil were as follows: 25.8%$(C_{16:0},\;C_{18:2},\;C_{18:2})$, 15.5%$(C_{18:2},\;C_{18:2},\;C_{18:2})$, 13.8%$(C_{16:0},\;C_{18:2},\;C_{16:0})$, 8.3%$(C_{18:2},\;C_{18:1},\;C_{18:2})$, 6.2%$(C_{18:2},\;C_{18:1},\;C_{18:1})$, 4.1%$(C_{18:1},\;C_{18:1},\;C_{14:0})$, 3.4%$(C_{16:0},\;C_{18:1},\;C_{16:0})$, 2.3%$(C_{18:1},\;C_{18:2},\;C_{16:0})$, 2.2%$(C_{18:1},\;C_{18:1},\;C_{18:1})$, 1.0%$(C_{14:0},\;C_{18:2},\;C_{18:1})$.

  • PDF

Analytical Methods for the Isolation of Dehydrotomatine and ${\alpha}$-Tomatine in Tomato Fruits by Use of Alumina Column Chromatography and High-Performance Liquid Chromatography (Alumina Column Chromatography와 HPLC에 의한 토마토의 Dehydrotomatine 및 ${\alpha}$-Tomatine 단리방법 연구)

  • Choi, Suk-Hyun;Kim, Hyen-Ryung;Lee, Jin-Shik
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.556-561
    • /
    • 2010
  • Tomato fruits(Lycoperisicon esculentum) synthesize the glycoalkaloids dehydrotomatine and ${\alpha}$-tomatine, possibly as defense against bacteria, fungi and insects. We developed a new effective method to prepare and purify dehydrotomatine and ${\alpha}$-tomatine that exists in tomato fruits using alumina column chromatography and high performance liquid chromatography (HPLC). The tomato glycoalkaloids(TGA) in tomato was extracted with 2% acetic acid, and then precipitated with ammonium hydroxide(pH=10.5). The dry precipitate substance was applied on alumina column, and then fractionated with water saturated n-butylalcohol. The TGA(Fr. No. 26~36) were collected and dried under reduced pressure. The TGA was performed on a reverse phase HPLC(Inertsil ODS-2, $5\;{\mu}m$), eluted with acetonitrile/20mM $KH_2PO_4$(24:76, v/v) at 208 nm. Two peaks were detected on HPLC, and individual peak was collected by repeating HPLC. Furthermore, to confirm the identity dehydrotomatine and ${\alpha}$-tomatine, each peak isolated was hydrolyzed with 1N HCl into sugar and aglycone tomatidine. The sugars were converted to trimethylsilyl ester derivatives. The nature and molar ratios of sugars were identified by gas-liquid chromatography(GLC) and the aglycone by high-performance liquid chromatography(HPLC). The first peak (Rt=17.5 min) eluted from HPLC was identified as dehydrotomatine, and second peak(Rt=21.0 min) was as ${\alpha}$-tomatine. This technique has been used effectively to prepare and isolate dehydrotomatine and ${\alpha}$-tomatine from tomato fruits.