• 제목/요약/키워드: HPLC Chromatography

Search Result 2,212, Processing Time 0.029 seconds

Pattern of Molecular Aggregation of Ginsenosides in Aqueous Solution (수용액(水溶液)에서 인삼배당체(人蔘配糖體)의 분자결합양상(分子結合樣相))

  • Park, Hoon;Lee, Mee-Kyoung;Park, Qwi-Hee
    • Applied Biological Chemistry
    • /
    • v.29 no.2
    • /
    • pp.198-206
    • /
    • 1986
  • For the information on micellization at each ginsenoside level aqueous solution of purified saponin of Panax ginseng root was dialyzed through dialysis tubing (MW 12,000) or eluted through Bio-Gel P-2 (MW 200-2,000) and analysed for ginsenosides by high performance liquid chromatography. Ginsenosides can be classified into three groups depending upon molecular aggregation pattern and spatial arrangement of hydrophilic parts in molecule. Group I that is large micelle former(aggregation number: above 10) and one side hydrophilic part (HP) includes $ginsenoside\;Rb_1$, $Rb_2$, Rc and Rd (diols). Group II thai is small micelle former (aggregation number:>10-1) and semi-two sales HP includes $Rg_2$, Rf (triol) and $Rg_3$ (diol). Group III that is no micelle former (aggregation number: 1) and two sides HP includes Re and $Rg_1$ (triol).

  • PDF

In Vitro Antifungal Activity of HTI Isolated from Oriental Medicine, Hyungbangjihwang-tang (형방지황탕으로부터 분리된 HTI의 항진균활성에 대한 연구)

  • Sung, Woo-Sang;Seu, Young-Bae;Lee, Dong-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • Hyungbangjihwang-Tang (HT), an Oriental herbal formula, has been known to play a role which helps to recover vigor of human in the Orient. In this study, antifungal substance (HTI) was purified from the ethyl-acetate extracts of HT by using $SiO_2$ column chromatography and HPLC, and the antifungal effects of HTI and its mode of action were investigated. By using a broth micro-dilution assay, the activity of HTI was evaluated against fungi. HTI showed antifungal activities without hemolytic effect against human erythrocytes. To confirm antifungal activity of HTI, we examined the accumulation of intracellular trehalose as stress response on toxic agents and effect on dimorphic transition in Candida albicans. The results demonstrated that HTI induced the accumulation of intracellular trehalose and exerted its antifungal effect by disrupting the mycelial forms. To understand its antifungal mode of action, cell cycle analysis was performed with C. albicans, and the results showed HTI arrested the cell cycle at the S phase in yeast. The present study indicates that HTI has considerable antifungal activity, deserving further investigation for clinical applications.

Plasma pharmacokinetics and urinary excretion of isoflavones after ingestion of soy products with different aglycone/glucoside ratios in South Korean women

  • Chang, Youngeun;Choue, Ryowon
    • Nutrition Research and Practice
    • /
    • v.7 no.5
    • /
    • pp.393-399
    • /
    • 2013
  • Asian populations are thought to receive significant health benefits from traditional diets rich in soybeans due to high isoflavone contents. However, available epidemiologic data only weakly support this hypothesis. The present study was carried out to assess the pharmacokinetics of isoflavones in South Korean women after ingestion of soy-based foods. Twenty-six healthy female volunteers (20-30 y old) consumed three different soy products (i.e., isogen, soymilk, and fermented soybeans) with different aglycone/glucoside ratios. Plasma and urine isoflavone concentrations were measured by high-performance liquid chromatography (HPLC) after ingestion of one of the soy products. Pharmacokinetic parameters were determined using the WinNonlin program. The area under the curve (AUC) for plasma daidzein levels of the soymilk group ($2,101{\pm}352ng{\cdot}h/mL$) was significantly smaller than those of the isogen ($2,628{\pm}573ng{\cdot}h/mL$) and fermented soybean ($2,593{\pm}465ng{\cdot}h/mL$) groups. The maximum plasma concentration ($C_{max}$) of daidzein for the soymilk group ($231{\pm}44$ ng/mL) was significantly higher than those of the isogen ($160{\pm}32$ ng/mL) and fermented soybean ($195{\pm}35$ ng/mL) groups. The half-lives of daidzein and genistein in the soymilk group (5.9 and 5.6 h, respectively) were significantly shorter than those in the individuals given isogen (9.6 and 8.5 h, respectively) or fermented soybean (9.5 and 8.2 h, respectively). The urinary recovery rates of daidzein and genistein were 42% and 17% for the isogen group, 46% and 23% for the fermented soybean group, and 33% and 22% for the soymilk group. In conclusion, our data indicated that soy products containing high levels of isoflavone aglycone are more effective for maintaining plasma isoflavone concentrations. Additional dose-response, durational, and interventional studies are required to evaluate the ability of soy-based foods to increase the bioavailability of isoflavones that positively affect human health.

Effects of Glycerol and Shikimic Acid on Rapamycin Production in Streptomyces rapamycinicus

  • La, Huyen Thi Huong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy;Nguyen, Quyen Minh Huynh;Nguyen, Minh Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.296-302
    • /
    • 2020
  • Rapamycin, derived from Streptomyces rapamycinicus, is an important bioactive compound having a therapeutic value in managing Parkinson's disease, rheumatoid arthritis, cancer, and AIDS. Because of its pharmaceutical activity, studies over the past decade have focused on the biosynthesis of rapamycin to enhance its yield. In this study, the effect of rapG on rapamycin production was investigated. The rapG expression vector was constructed by utilizing the integration vector pSET152 under the control of the erythromycin resistance gene (ermE), a strong constitutive promoter. The rapamycin yield of wild type (WT) and WT/rapG overexpression mutant strains, under fermentation conditions, was analyzed by high-performance liquid chromatography (HPLC). Our results revealed that overexpression of rapG increased rapamycin production by approximately 4.9-fold (211.4 mg/l) in MD1 containing 15 g/l of glycerol, compared to that of the WT strain. It was also found that Illicium verum powder (10 g/l), containing shikimic acid, enhanced rapamycin production in both WT and WT/rapG strains. Moreover, the amount of rapamycin produced by the WT/rapG strain was statistically higher than that produced by the WT strain. In conclusion, the addition 15 g/l glycerol and 15 g/l I. verum powder produced the optimal conditions for rapamycin production by WT and WT/rapG strains.

Scant Extracellular NAD Cleaving Activity of Human Neutrophils is Down-Regulated by fMLP via FPRL1

  • Hasan, Md. Ashraful;Sultan, Md. Tipu;Ahn, Won-Gyun;Kim, Yeon-Ja;Jang, Ji-Hye;Hong, Chang-Won;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.497-502
    • /
    • 2014
  • Extracellular nicotinamide adenine dinucleotide (NAD) cleaving activity of a particular cell type determines the rate of the degradation of extracellular NAD with formation of metabolites in the vicinity of the plasma membrane, which has important physiological consequences. It is yet to be elucidated whether intact human neutrophils have any extracellular NAD cleaving activity. In this study, with a simple fluorometric assay utilizing $1,N^6$-ethenoadenine dinucleotide (etheno-NAD) as the substrate, we have shown that intact peripheral human neutrophils have scant extracellular etheno-NAD cleaving activity, which is much less than that of mouse bone marrow neutrophils, mouse peripheral neutrophils, human monocytes and lymphocytes. With high performance liquid chromatography (HPLC), we have identified that ADP-ribose (ADPR) is the major extracellular metabolite of NAD degradation by intact human neutrophils. The scant extracellular etheno-NAD cleaving activity is decreased further by N-formyl-methionine-leucine-phenylalanine (fMLP), a chemoattractant for neutrophils. The fMLP-mediated decrease in the extracellular etheno-NAD cleaving activity is reversed by WRW4, a potent FPRL1 antagonist. These findings show that a much less extracellular etheno-NAD cleaving activity of intact human neutrophils compared to other immune cell types is down-regulated by fMLP via a low affinity fMLP receptor FPRL1.

Anticandidal Activity of the Protein Substance from Coptidis Rhizoma (황련에서 분리된 단백질성분의 항진균효과)

  • Kim Hyunkyung;Lee Jue-Hee;Shim Jin Kie;Han Yongmoon
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.323-329
    • /
    • 2005
  • Antimicrobial peptides are evolutionary ancient weapons for animal and plant species to depend themselves against infectious microbes. In the present study, we investigated if an antimicrobial peptide was produced from Coptidis Rhizoma. For the determination, protein substance from the medicinal plant was isolated by various preparations. Among the preparations, the protein portion dissolved in phosphate-buffered saline solution (CRP-DS) that contained the most amount of protein $(90\%)$ resulted in maximal inhibition of Candida albicans which causes local and systemic infections. Analyses by gel-electrophoresis and gel-permeation chromatography showed the CRP-DS formed a single band of approximately 11.8 KDa as molecular size. Antifungal activity of the CRP-DS was almost equivalent to antifungal activity by fluconazole, resulting in MIC (minimal inhibitory concentration) of approximately $50{\mu}g/ml$. The antifungal activity was a dose-dependent. The antifungal activity appeared to be inactivated by heat-treatment and ionic strength, respectively. In a murine model, the CRP-DS enhanced resistance of mice against disseminated candidiasis. The HPLC analysis demonstrated maximum $4\%$ of berberine as residual content in the CRP-DS preparation resulted in no influence on the antifungal activity. In addition, protein portion isolated from Phellodendri Cortex producing the alkaloid component like Coptidis Rhizoma had no such anticandidal effect. These results indicate that the protein substance from Coptidis Rhizoma was responsible for the antifungal activity.

Changes of residual concentration in serum of the dairy cattle after administration of oxytetracycline and sulfadimethoxine sodium (유우에 oxytetracycline 및 sulfadimethoxine sodium 투여 후 혈청내 잔류함량 변화추이)

  • 도재철
    • Korean Journal of Veterinary Service
    • /
    • v.25 no.2
    • /
    • pp.141-151
    • /
    • 2002
  • In order to know the depletive changes of sulfadimethoxine and oxytetracycline residues in se겨m of dairy cattle intramusculally administered with sulfadimethoxine sodium(SDS) and oxytetracycline(OTC), the concentration of sulfadimethoxine and oxyteracycline was measured in serum of dairy cattle with using high performance liquid chromatography(HPLC). SDS and OTC was intramuscularlly administrated to dairy cattle at the rate of 10mg/kg(SDS) and 10mg/kg(OTC) body weight(recommended therapeutic dose) once to four dairy cattle. There were investigated the depletive changes of the sulfadimethoxine and oxytetracycline in serum of dairy cattle at the time 2, 4, 8 hours, 1st, 2nd, 3rd, 4th and 5th day after administration SMS and OTC, respectively. The results obtained were summarized as follows; 1. After intramuscularlly administration of the SMS, the mean concentrations of sulfamethazine in serum according to the time lapsed were showed 33.964 $\pm$ 4.435ppm at the 4 hours after withdrawal of medicated sulfadimethoxine sodium. And gradually according to the time lapsed, the concentrations of sulfadimethoxine residues in serum were significantly (p<.05) decreased 6.596 $\pm$ 3.402 ppm at 1st day, 0.217 $\pm$ 0.119 ppm at 3rd day and 0.057 $\pm$ 0.032 ppm at 4th day, respectively. 2. The mean residual concentration of OTC in serum according to the time lapsed after intramuscularly administration OTC were showed 0.743 $\pm$ 0.368ppm at the 8 hours. And gradually according to the time lapsed, the mean concentrations of OTC residues in serum of dairy cattle were significantly(p<.05) decreased such as 0.057 $\pm$ 0.047ppm at 3rd day and 0.039 $\pm$ 0.016ppm at the 5th day, respectively. In conclusion, this study could be suggested the relationship between administrated period, sulfonamides and tetracycline residual aspects in serum, and the importance of observing ceasing period of antibiotic drugs before forwarding livestocks to slaughter, Thus, this results would be able to be used the basic index for prevention of sulfonamides and tetracycline residues in dairy breedings.

Pancreatic Lipase Inhibitors in the Roots of Taraxacum ohwianum, a Herb Used in Korean Traditional Medicine (민들레 뿌리로부터 Pancreatic lipase 저해 물질의 분리)

  • Kim, Tae-Wan;Kim, Tae-Hoon
    • Food Science and Preservation
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Activity-guided isolation from an ethylacetate-soluble fraction of a 70% (v/v) ethanolic extract from the roots of Taraxacum ohwianum, using a pancreatic lipase inhibition assay, resulted in isolation and identification of five phenolic metabolites of previously known structure; these were 3,5-di-O-caffeoylquinic acid, chicoric acid, caffeic acid, protocatechuic aldehyde, and luteolin. All structures were confirmed by NMR and MS scpectroscopic data. Of these compounds 3,5-di-O-caffeoylquinic acid exhibited the most potent inhibitory activity, with $IC_{50}$ of $65.1{\pm}0.7\;{\mu}M$ against pancreatic lipase.

Chemical Composition and Sensory Attributes of Brewed Coffee as Affected by Roasting Conditions (로스팅 조건 변화에 따른 커피 추출액의 화학성분 및 관능 특성)

  • Kim, Sung-Hye;Kim, Joo-Shin
    • Culinary science and hospitality research
    • /
    • v.23 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • The objectives of this study were: 1) to examine the contents of chemical composition (chlorogenic acids, caffeine, free acids, and free sugars) and 2) to evaluate the sensory attributes (sourness, bitterness, and sweetness) of brewed coffee as affected by two roasting conditions such as varied in the roasting time with the same roasting temperature (RT) and with same color and yield (CY). Quantitative analysis of chemical components was performed using high-performance liquid chromatography (HPLC) system, and quantitative descriptive analysis (QDA) was conducted to analyze sensory attributes. Based on the results of chemical analysis, chlorogenic acids were significantly different (p<0.05) in the short term roasted samples (RT 240 and CY 240), but there was no significant difference in caffeine contents (p>0.05). Organic acid levels were different between RT and CY coffee samples. RT 240 coffee had the most level in organic acids and the longer the roasting time of coffee, the lesser the level of organic acids in coffee was found. However, there was no significant difference in CY coffee (p>0.05). The results of sensory evaluations show that the degree of roasting changed according to the roasting time despite of the roasting temperature. Long term (RT 80) coffee was relatively bitter while short term (RT 240) coffee was relatively sweeter. Also, there was no significant difference (p>0.05) in the sensory characteristics (bitterness and sweetness) of CY coffee although they were roasted at different temperatures. Therefore, the current study concluded that better understanding of proper roasting time and temperature improves the quality of brewed coffee.

Isolation and Characterization of an Antibacterial Substance from Rheum palmatum for Treatment of Bacterial Vaginosis (대황으로부터 세균성 질염 치료를 위한 항균성 물질의 분리 및 특성)

  • Jang, Jieun;Kang, Dong-Hee;Yoon, Jaewoo;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Rheum palmatum has traditionally been used as a preventive agent and medication against fever and infection. The aim of this study was to isolate and characterize an antibacterial substance from R. palmatum that is effective against bacterial vaginosis. A methanol extract from R. palmatum showed antibacterial activity against Lactobacillus vaginalis KC TC 3515, Chryseobacterium gleum KCTC 2904, and Sphingomonas paucimobilis KCTC 2834, which cause bacterial vaginosis. After extraction and pH control of the methanol extract from R. palmatum, we found that acidic and alkaline extracts did not show antibacterial activity. A neutral extract (50 mg/mL) displayed an inhibitory zone of 18 mm on a nutrient agar plate with C. gleum KCTC 2904. Fractions No. 11 and 12 among 41 fractions obtained by silica gel column chromatography produced inhibitory zones of 10 mm on nutrient agar plates with C. gleum KCTC 2904. $R_f0.15$ and $R_f0.17$ spots produced by TLC of fraction No. 11 showed antibacterial activity against C. gleum KCTC 2904. Isolation and purification of the peak at a retention time (Rt) of 9.427 min was achieved by HPLC of $R_f0.29spots$. The peak at Rt 9.427 min showed antibacterial activity against C. gleum KCTC 2904.