• Title/Summary/Keyword: HPC (heterotrophic plate counts)

Search Result 9, Processing Time 0.016 seconds

Characterizations of Assimilable Organic Carbon, Biodegradable Dissolved Organic Carbon, and Bacterial Regrowth in Distribution Systems by Water Treatment (배수관망에서 수처리에 의한 AOC, BDOC및 세균성장의 특성)

  • Chang, Young-Cheol;Kweon Jung;Yoo, Young-Sik;Kang, Mi-Hye;Andrew A. Randall
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.42-52
    • /
    • 2002
  • Two full-scale distribution systems, one treating water by ozonation and another treating water by nanofiltration in parallel with lime softening, were monitored for bacterial growth. Both systems kept disinfectant residuals surf as chlorine and chloramine in their respective distribution systems. Bacterial growth was assessed by heterotrophic plate counts (HPC) on R2A agar. In the distribution systems fed by ozonated water, HPCs were correlated ($R^2$= 0.97) using an exponential model with the assimilable organic carbon (AOC) at each sampling site. Also, it was observed that ozonation caused a significant increase in the AOC concentration of the distribution system (over 100% increase) as well as a significant increase in the bacterial counts of the distribution system (average increase over 100%). The HPCs from the distribution systems fed by nanofiltration in parallel with lime-softening water also displayed an exponential correlation ($R^2$ = 0.75) with an exponential model based on AOC. No significant correlation was found between bacteria growth on R2A agar and BDOC concentrations. Therefore, in agreement with previous work, bacterial growth in the distribution systems was found to correlate with AOC concentrations.

Influence of C/N ratio on biofim growth in tap water (수돗물의 C/N 비율이 생물막 생장에 미치는 영향)

  • Cho, Ji-Min;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.527-533
    • /
    • 2018
  • Microorganisms detected in the biofilm not only cause secondary pollution of drinking water such as taste, odor and pathogenic disease but also increase the amount of disinfectant due to microbial regrowth during the transportation of tap water. In this work, the influence of C/N ratio in tap water on the characteristics of biofilm growth was examined. The C/N ratio of the tap water sample was controlled at 100:5, 100:10, 100:20, 100:30, and 100:40 by adding appropriate amounts of dextrose and $(NH_4)_2SO_4$. Of the five C/N ratios, heterotrophic plate counts (HPC) was highest at the ratio of 100:10. Following the initial formation in all the five experimental conditions, natural detachment of the biofilm was observed. Extracellular enzyme activity (EEA) analyses showed that the change of the EEA during the experimental period was similar to that of the HPC, demonstrating a positive correlation between HPC and EEA. For TOC concentration in the tap water sample, approximately 75% of the TOC was consumed in 7 days of the experiment and 96% in 28 days. The TOC appeared to be relatively rapidly consumed at the initial phase of the biofilm growth. Consumption pattern of the ammonia nitrogen was different from the TOC consumption pattern showing the different role of ammonia nitrogen on the growth of biofilm.

Water quality analyses between tap water and treated water by point-of-use water dispenser systems (정수기 공급수인 수돗물과 정수기 통과수의 수질차이 분석)

  • Park, Keun-Young;Park, Ji-Won;Kim, Jae-Hyeok;Na, Yeong;Maeng, Sung-Kyu;Kim, Sung-Pyo;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.395-404
    • /
    • 2019
  • The point-of-use water dispenser systems are widely used because of convenience in handling and demand for high-quality drinking water. The application has been increased recently in the public places such as department stores, universities and the rest areas in express ways. Improvement of water qualities by the dispenser systems was compared with tap water in this study. The tap water is supplied to the dispenser as the influent of the dispenser system. The twelve dispensers in the public places were used. The five dispensers used reverse osmosis as the main filter and other dispensers used various filters such as ultrafiltration, nanofiltration, and alumina filter. The water quality indicators for sanitation safety, i.e., turbidity and total coliforms, were evaluated. Other water qualities such as pH, residual chlorine, heterotrophic plate count (HPC), and total cell counts were also analyzed. By the point-of-use water dispenser, the turbidity, residual chlorine and pH were decreased and the HPC and total cell counts were increased. The t-test results revealed that the HPC of the tap waters were not significantly different from the treated waters but the total cell counts of the two groups were significantly different. The low pH of the RO filter treatment was also significantly different from the tap waters. This study will contribute to understand the role of the point-of-use water dispenser in improving water quality and to identify key water quality for the proper maintenance of the dispenser systems.

Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System

  • Chen, Lihua;Zhu, Xuan;Zhang, Menglu;Wang, Yuxin;Lv, Tianyu;Zhang, Shenghua;Yu, Xin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.995-1004
    • /
    • 2017
  • Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of $2.14{\times}10^7copies/100ml$ in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

Meta-Analysis of Risk Factors for Contamination of Environmental Waters by Legionella (환경수계 레지오넬라균 오염 지표의 메타분석)

  • Zo, Young-Gun
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.424-428
    • /
    • 2013
  • To identify risk factors for Legionella contamination, water quality variables routinely measured in examination of natural and city waters were meta-analyzed for significance of correlation to Legionella incidences. For evaluation of abundance of Escherichia coli as a risk factor, which is currently used as an indicator of Legionella contamination in an official guideline in Korea, odds ratio (OR) of above-cutoff total coliform counts for Legionella presence/absence was used as the effect size in the meta-analysis. The OR was estimated as 1.05 (0.36-3.12, 95% CI), and the probability of having identical odds reached 0.92. Also, ORs from individual studies showed significant heterogeneity (P=0.008), which contributed to 63% of total variance of the ORs. In the case of heterotrophic plate count (HPC), the OR for Legionella presence/absence was 2.72 (2.04-3.63) with highly significant deviation from identical odds (P<0.0001). ORs from different studies were seemingly homogeneous ($Q_{df=8}$=12.7, P=0.12). Turbidity and concentrations of chlorine, iron ion and cupper ion were other routine variables that could be considered as risk factors. However, statistical measures from different studies were not uniform enough to develop an appropriate effect size while the number of studies reporting the variables was also small (3-5). In conclusion, HPC appeared to be appropriate as indicator of Legionella contamination, rather than fecal bacteria contamination. HPC may imply abundance of habitats (amoebas and biofilms) of Legionella in water. This result warrants further studies for standardizing protocols and cutoff values to infer Legionella risks from HPC.

Study on Microorganism Multiplication Behavior and Efficiency of Chlorine Disinfection in the Sewage Effluent from J Municipal Waste Water Treatment Plant (J 하수 처리장 방류수 중 세균의 성장 거동 및 염소 소독 효율 고찰)

  • Lee, Ungi;Lee, Yoonjin;Jeong, Kyuyean
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.122-128
    • /
    • 2008
  • We evaluated the relationship between the multiplication of heterotrophic microorganisms and physicochemical factors in the final discharged sewage water from J municipal waste water treatment plants. Dissolved organic carbon (DOC) was the most crucial factor influencing multiplication of heterotrophic plate counts (HPC) among the water quality variables selected. Degrading bacteria, such as proteolytic bacteria, lipholytic bacteria, starch degrading bacteria, cellulolytic bacteria, and pectinolytic bacteria, were monitored to understand the condition of nutrients in finished sewage effluent. The percentages of lipid and protein combined occupied 81% in finished sewage water. The multiplication of HPC showed the highest value in August. The formation of trihalomethane (THM) was low in the finished discharge water during chlorine disinfection, which was $71{\mu}/L$ (which was less than $100{\mu}/L$- the standard of drinking water quality) with 10 mg/L of chlorine during 15 min.

Effects of Chlorine Residual and Pipe Material on the Biofilm Formation in Drinking Water Distribution Pipe (수도관의 생물막 형성에 미치는 잔류염소와 파이프 재질의 영향)

  • Park, Se-keun;Park, Jae-Woo;Sung, Kwon-Shic;Choi, Sung-Chan;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.11-20
    • /
    • 2001
  • This laboratory study examined the impact of free chlorine residual and pipe material on the formation of biofilm in drinking water distribution pipe surfaces. Result of heterotrophic plate counts(HPC) of the biofilm in the tap water-supplied reactor averaged $2.17{\times}10^5CFU/cm^2$ on PVC and $2.43{\times}10^5CFU/cm^2$ on STS 316, respectively. HPCs on the surface exposed to the tap water containing 0.2mg/L of free chlorinne residual averaged $4.24{\times}10^4CFU/cm^2$ on PVC and $6.54{\times}10^4CFU/cm^2$ on STS 316, respectively. Average of HPC/Total direct counts in the tap water-supplied reactor ranged from 1.08%(PVC) to 1.26%(STS 316) and from 0.38%(PVC) to 0.65%(STS 316) in the reactor supplemented with disinfectant, respectively. No correlation was observed between disinfectant addition and biofilm density. With regard to the biofilm formation, little difference existed between PVC and STS 316. Yellow and red pigmented bacteria were the dominant expressions in bulk fluid, whereas non-pigmented bacteria were found dominant in the biofilm. Pink/red pigmented bacteria were found to be facultative anaerobic, while yellow pigmented bacteria and non-pigmented bacteria were found to be obligate aerobic.

  • PDF

Distribution and Characteristics of Heterotrophic Plate Count Bacteria in Water Samples from Drinking Water Dispensers (냉온수기에서 일반세균의 분포 및 분리한 세균의 특성)

  • Lee, Eun-Hwa;Koh, Ji-Yun;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.244-250
    • /
    • 2008
  • To evaluate bacteriological water quality, samples were taken from drinking water dispensers placed at S company (S-C) and U highschool (U-H) in Ulsan. The medians of heterotrophic plate counts (HPCs) were 53 CFU/ml for the 74 water samples of S-C and 80 CFU/ml for the 36 cold water samples of U-H, and 38% of the S-C and 42% of the U-H samples showed HPC bacterial concentrations higher than 100 CFU/ml. Coliform bacteria were detected from one sample of S-C. To determine the major source of bacterial contamination, water samples were taken daily for $6\sim8$ days from the bottled water containers as well as the faucets of an experimental water dispenser. While the average HPCs in the bottled water containers were 33 CFU/ml for the first and 132 CFU/ml for the 2nd analysis, the HPC concentration in the cold water samples was 1,022 CFU/ml for the 2nd analysis. These results suggest that the majority of bacteria detected in the cold water samples were originated from the biofilms on the surface of water passages within the water dispensers. There was no significant increase in HPC bacterial concentrations within the bottled water container after installation on the water dispenser. We could isolate and tentatively identify 3 genera 6 species of Gram-positive and 7 genera 7 species of Gram-negative bacteria from the plate count agar plates of U-H samples. Among the isolates, 72% were observed as Gram-positive, and Micrococcus spp. was the most abundant with 54% of the total, followed by Sphingomonas paucimobilis with 16%. It appears that most of the HPC bacteria detected in water dispensers originate from indoor airborne bacteria, which may play important roles in the formation of biofilms on the surface of water passages within the water dispensers.

The Characteristics of Microbial Community for Biological Activated Carbon in Water Treatment Plant (생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성)

  • Son, Hee-Jong;Park, Hong-Ki;Lee, Soo-Ae;Jung, Eun-Young;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1311-1320
    • /
    • 2005
  • The purpose of this research is to survey characteristics of microbial community and the removal efficiency of organic materials for biological activated carbon in water treatment plant. Coal based activated carbon retained more attached bacterial biomass on the surface of the activated carbon than the other activated carbon with operating time and materials. The heterotrophic plate count(HPC), eubacteria(EUB) and 4,6-diamidino-2-phenylindole(DAPI) counts were ranged from $0.95{\times}10^7$ to $52.4{\times}10^7$ CFU/g, from $3.8{\times}10^8$ to $134.2{\times}10^8$ cells/g and from $7.0{\times}10^8$ to $250.2{\times}10^8$ cells/g, respectively. The biomass of EUB and DAPI appeared to be much more $10^2$ than HPC, which were increasing in bed volume of 20,000 at the stage of steady-state. The change of microbial community by analyzing fluorescent in situ hybridization(FISH) method with rRNA-targeted oligonucleotide probes, the dominant group was $\alpha$-proteobacteria($\alpha$ group) and high G+C content bacteria(HGC) the lowest distributing rate before reaching the bed volume of 20,000. After reaching the bed volume of 20,000, $\alpha$ group and other groups of bacteria became decreased, on the other hand, the proportion of both $\beta$-proteobacteria($\beta$ group) and $\gamma$-proteobacteri($\gamma$ group) were increasing. Coconut and wood based activated carbons had similar trend with coal based activated carbon, but the rate of $\alpha$ group on coal based activated carbon had gradually increased. Bacterial production with the operating period appeared highest in coal based activated carbon at the range of $1.2{\sim}3.4\;mg-C/m^3{\cdot}h$ while the coconut and wood based activated carbon were ranged from 1.1 to 2.6 $mg-C/m^3{\cdot}h$ and from 0.7 to 3.5 $mg-C/m^3{\cdot}h$ respectively. The removal efficiency of assimilable organic carbon(AOC) showed to be highly correlated with bacterial production. The correlation coefficient between removal efficiency of AOC and bacterial production were 0.679 at wood based activated carbon, 0.291 at coconut based activated carbon and 0.762 at coal based activated carbon, respectively.