• Title/Summary/Keyword: HPBW

Search Result 37, Processing Time 0.017 seconds

Design of an Equivalent Antenna Model for Array Antennas Using Open-Ended Waveguide (열린 도파관을 이용한 배열안테나의 전자파 해석 등가 모델링 기법)

  • Lee, Dongeun;Byun, Gangil;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.525-532
    • /
    • 2015
  • In this paper, we propose an equivalent model of array antennas that use open-ended waveguides for effective EM simulation. We first investigate an individual element that consists of an open-ended waveguide and square ground plane. The waveguide length, aperture size, and ground size of the individual element are adjusted to give a similar radiation pattern to that of the individual element of the original antenna. We then apply the designed equivalent model to two different types of array antennas, such as a microstrip patch array and a waveguide array antenna. Comparison of the simulation results using the equivalent model with the results obtained with the original antenna reveals a difference in gain of less than 0.2 dB and a difference in half power beam width(HPBW) of less than $1^{\circ}$. The designed equivalent model is then mounted on a simple aircraft, and the simulation results are again compared to results from the original antenna. We find a 60 % reduction in simulation resources and time when compared with the original antenna model.

Design of a 2~18 GHz Wideband Cavity-Backed Spiral Antenna (2~18 GHz 광대역 캐비티 백 스파이럴 안테나 설계)

  • Cho, Jung-Rae;Park, Jin-Oh;You, Byung-Sek;Jeong, Un-Seob;Chung, Woo-Sung;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1166-1174
    • /
    • 2008
  • In this paper, design of a $2{\sim}18$ GHz wideband cavity-backed spiral antenna is investigated. Firstly, an arm pattern and a backing cavity of a cavity-backed spiral antenna are designed based on the design theory of an Archimedean spiral antenna as well as by using CST's MWS. VSWR, axial ratio, and HPBW(Half Power Beam Width) characteristics are considered in the simulation. Secondly, a Marchand coaxial balun is designed to meet the required VSWR within the frequency band of operation. Finally, the validity of these approaches is verified by comparing the simulated results with measured ones.

Developmentof Dual Polarized Base station Antenna with Electrical Down tilting (전기적 다운 틸팅 기능을 갖는 이중 편파 기지국 안테나 개발)

  • Lee, Chang-Eun;Yun, Jong-Sup;Moon, Young-Chan;Hur, Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.81-88
    • /
    • 2004
  • In case of mechanical down tilting, a horizontal pattern is distorted and beam width widens whenincreasing tilt angle, which causes an expansion of hand off region and burden base station equipment. In contrast, electrical down tilting has advantage that horizontal HPBW is kept constant with down tilting. In this paper, based on a phased array technology, dual polarized base station antenna with electrical down tilting was developed at 800MHz band. The antenna has down tilting range of 0$^{\circ}$ to 14$^{\circ}$, and 15㏈i gain. We use stacked microstrip patch as a radiated element and apply balanced feed technique to improve isolation between ports and discrimination of cross polarization. The effect of electrical down tilting was verified by field test.

Study for the Size Reduction of Microstrip Patch Antenna using Corrugation (주름 구조를 이용한 마이크로스트립 패치 안테나의 소형화에 대한 연구)

  • 송무하;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.192-201
    • /
    • 2003
  • In this paper, to reduce the size of patch, three types of 3-dimensional patch antennas which are one-directionally-corrugaged type, rectangular ring-likely corrugated type, and lattice-likely corrugated type rectangular microstrip patch antennas(MPA) are designed and fabricated at the 1.575 GHz. As the result, one-directionally corrugated rectangular MPA is reduced in the resonant length of patch by 21.4% than that of general plane MPA. -10 dB bandwidth(B.W) is 62 MHz(3.9 %) and this is broader than that(39 MHz, 2.5 %) of plane MPA by 23 MHz(1.5 %). The gain is 5.8 dBd and this is reduced by 0.9 dB than that(6.7 dBd) of plane MPA. Half power beamwidth(HPBW) is broadened by 18$^{\circ}$ than that of plane MPA in the E-plane and this is due to the reduced length of patch. For rectangular ring-likely corrugated retangular MPA, the patch size is miniaturized by 21.6 % than that of plane MPA. For lattice-likely corrugated rectangular MPA, in the linear polarization, the size of patch is miniaturized by 43.3 % than that of plane MPA. -10 dB B.W is 70 MHz(4.4 %) and this is broadened than that of plane MPA by 31 MHz(2 %). Gain is 2.2 dBd and this is smaller than that of plane MPA by 4.5 dB. HPBW is increased in both E-plane and H-plane by 22$^{\circ}$ and 13$^{\circ}$, respectively. For circular polarization, the size of patch is reduced by 41 % than that by 41 %. The axial ratio(AR) is 0.8 dB at the 1.575 GHz and the axial ratio bandwidth(ARBW) within 2 dB is 20 MHz(1.27 %) and this is increased by 10 MHz(0.63 %) than that 10 MHz(0.63 %) of plane MPA. From all the results above, it is conformed that the proposed antenna has merit in size reduction of patch and in the input impedance B.W, and is more profitable in many application than the general plane type MPA.

Miniaturization of Microstrip Antenna Using 'L' Shaped Plate ('L'자형 Plate를 이용한 마이크로스트립 안테나의 소형화)

  • Jang Yon-Jeong;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.501-510
    • /
    • 2005
  • In this paper, the miniaturized linear and circular polarization microstrip antennas are designed and fabricated at the resonant frequency of 1.575 GHz. To miniaturize the microstrip patch antenna(MPA), the 'L' type plates are attached under the rectangular microstrip patch. In case of the linear polarization, the size of the microstrip antenna attached the 14 plates is reduced to $67.9\%(47mm{\times}47mm)$ compared with general $MPA(83mm{\times}83mm)$. The return loss and -10 dB bandwidth are -34.4 dB and 49 $MHz(3.1\%)$. And the radiation pattern is broad through the size reduction of the patch. Also in case of the circular polarization, the size of the microstrip antenna with 13 plates is reduced to $54.6\%(53mm{\times}54mm)$ compared with the general $MPA(76mm{\times}83mm)$. The axial ratio is 1.37dB at 1.575 GHz, the 2 dB axial ratio bandwidth is 14 $MHz(0.8\%)$. As that result, we could confirm that 3-dimensional structure with attached 'L' shaped plate is proper form for the miniaturization of linear and circular polarization microstrip antenna.

Design of a Dual-band Snowflake-Shaped Microstrip patch Antenna With Short-pin For 5.2/5.8 GHz WLAN System (WLAN System을 위한 Short-Pin을 갖는 Snowflake 모양의 Dual-band(5.2/5.8 GBz) 마이크로스트립 패치 안테나 설계 및 제작)

  • Song, Jun-Sung;Choi, Sun-Ho;Lee, Hwa-Choon;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4A
    • /
    • pp.324-329
    • /
    • 2009
  • In this paper, a novel Snowflake-shaped microstrip patch antenna for application in the WLAN(5.2/5.8GHz) band is designed and fabricated. The size of antenna is $21.2{\times}16mm^2$ and substrate is used Taconic-RF30. To obtain sufficient bandwidth in Return loss <-10dB and dual resonance characteristic, the Short-pin is inserted on the patch and the coaxial probe source is used. The measured results of fabricated antenna show 220MHz and 135MHz bandwidth in Return loss <-10dB referenced to the WLAN(5.2/5.8GHz) band. The measured antenna gain is $4.7{\sim}6.9dBi$ in the WLAN(5.2/5.8GHz) band. The experimental 3-dB beam width in I-plane and H-plane are $73.2^{\circ}/82.75^{\circ}$ for 5.1500Hz, $74.56^{\circ}/83.63^{\circ}$ for 5.3500Hz, and $86.24^{\circ}/85.15^{\circ}$ for 5.7850Hz, respectively.

Compact Orthomode Transducer for Field Experiments of Radar Backscatter at L-band (L-밴드 대역 레이더 후방 산란 측정용 소형 직교 모드 변환기)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Joo, Jeong-Myeong;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.711-719
    • /
    • 2011
  • A study of miniaturization of an L-band orthomode transducer(OMT) for field experiments of radar backscatter is presented in this paper. The proposed OMT is not required the additional waveguide taper structures to connect with a standard adaptor by the newly designed junction structure which bases on a waveguide taper. Total length of the OMT for L-band is about 1.2 ${\lambda}_o$(310 mm) and it's a size of 60 % of the existing OMTs. And, to increase the matching and isolation performances of each polarization, two conducting posts are inserted. The bandwidth of 420 MHz and the isolation level of about 40 dB are measured in the operating frequency. The L-band scatterometer consisting of the manufactured OMT, a horn-antenna and network analyzer(Agilent 8753E) was used STCT and 2DTST to analysis the measurement accuracy of radar backscatter. The full-polarimetric RCSs of test-target, 55 cm trihedral corner reflector, measured by the calibrated scatterometer have errors of -0.2 dB and 0.25 dB for vv-/hh-polarization, respectively. The effective isolation level is about 35.8 dB in the operating frequency. Then, the horn-antenna used to measure has the length of 300 mm, the aperture size of $450{\times}450\;mm^2$, and HPBWs of $29.5^{\circ}$ and $36.5^{\circ}$ on the principle E-/H-planes.