• Title/Summary/Keyword: HOPS

Search Result 220, Processing Time 0.02 seconds

IEEE 802.11 MAC based Multi-hop Reservation and Backoff Scheme in MIMC Tactical Ad Hoc Networks (전술 애드 혹 네트워크에서 다중 홉 전송을 위한 자원 예약 및 백오프 기법)

  • Cho, Youn-Chul;Yoon, Sun-Joong;Ko, Young-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2012
  • In multi-interface multi-channel(MIMC) based tactical ad hoc networks, QoS support for required operational capacity is one of the main challenging issues for multi-hop transmissions. To support QoS in such a harsh environment, we propose a novel MAC scheme to minimize multi-hop as well as per-hop delay. The current IEEE 802.11 MAC protocols should contend to reserve the channel resource at every hop by each sender. The every-hop channel contention results in a degradation of end-to-end delay for multi-hop transmissions. The basic idea of our scheme is to make a "multi-hop reservation" at the MAC layer by using the modified RTS frame. It contains additional information such as destination information, packet priority, and hop count, etc. In addition, we differentiate the contention window area according to the packet priority and the number of hops to deliver packets in the predefined allowed latency. Our scheme can minimize the multi-hop delay and support the QoS of the critical data in real time(i.e., VoIP, sensing video data, Video conference between commanders). Our simulation study and numerical analysis show that the proposed scheme outperforms the IEEE 802.11 MAC.

An Optimal Path Routing in Wireless Mesh Network (무선 메쉬 네트워크에서 최적화된 경로선정을 위한 라우팅)

  • Lee, Ae-Young;Roh, II-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.43-48
    • /
    • 2009
  • Wireless mesh networks, unlike Ad-hoc network, has low mobility and multi-path communication between terminals and other networks because it has the backbone structures. Most studies are advanced on finding the optimal routing path in multi-hop wireless mesh network environment. Various routing metric, minimum number of hops(Hop_count) and ETX, ETT metric, are proposed to wireless mesh networks. However, most metrics cannot identify the high throughput routing paths because this metric uses a different measurement parameters in each direction. So actual delivery rate does not provide to this metric. This paper describes the metric and implementation of IETC as a metric. This paper shows the improvement in performance.

  • PDF

The Construction and Performance Test of High-Speed Satellite Network Pilot System for Hydrological observations (수문관측용 고속 위성망 Pilot 시스템 구축 및 성능시험)

  • Hong, Sung-Teak;Shin, Gang-Wook;Jang, Sung-Woon;Park, Seong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.715-724
    • /
    • 2010
  • K-water has used satellite networks for 12 years for hydrological observation in various parts such as remote data acquisition and providing information including flood forecasting. It is the time to replace equipments according to long-term use of the system. A pilot system for high speed satellite networks is implemented by seven terminals, three 2-hops and 1 hub in Ku-Band bandwidth by using VSAT. According to the result for the performance test on the system, the result fot all items, including Link Budget designed meets performance levels.

A Simple Cooperative Transmission Protocol for Energy-Efficient Broadcasting Over Multi-Hop Wireless Networks

  • Kailas, Aravind;Thanayankizil, Lakshmi;Ingram, Mary Ann
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.213-220
    • /
    • 2008
  • This paper analyzes a broadcasting technique for wireless multi-hop sensor networks that uses a form of cooperative diversity called opportunistic large arrays (OLAs). We propose a method for autonomous scheduling of the nodes, which limits the nodes that relay and saves as much as 32% of the transmit energy compared to other broadcast approaches, without requiring global positioning system (GPS), individual node addressing, or inter-node interaction. This energy-saving is a result of cross-layer interaction, in the sense that the medium access control (MAC) and routing functions are partially executed in the physical (PHY) layer. Our proposed method is called OLA with a transmission threshold (OLA-T), where a node compares its received power to a threshold to decide if it should forward. We also investigate OLA with variable threshold (OLA-VT), which optimizes the thresholds as a function of level. OLA-T and OLA-VT are compared with OLA broadcasting without a transmission threshold, each in their minimum energy configuration, using an analytical method under the orthogonal and continuum assumptions. The trade-off between the number of OLA levels (or hops) required to achieve successful network broadcast and transmission energy saved is investigated. The results based on the analytical assumptions are confirmed with Monte Carlo simulations.

Improved SDR Frequency Tuning Algorithm for Frequency Hopping Systems

  • Ibrahim, Mostafa;Galal, Islam
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.455-462
    • /
    • 2016
  • Frequency hopping (FH) is a common characteristic of a wide variety of communication systems. On the other hand, software-defined radio (SDR) is an increasingly utilized technology for implementing modern communication systems. The main challenge when trying to realize an SDR FH system is the frequency tuning time, that is, the higher the hopping rate, the lower the required frequency tuning time. In this paper, significant universal hardware driver tuning options (within GNU Radio software) are investigated to discover the tuning option that gives the minimum frequency tuning time. This paper proposes an improved SDR frequency tuning algorithm for the generation of a target signal (with a given target frequency). The proposed algorithm aims to improve the frequency tuning time without any frequency deviation, thus allowing the realization of modern communication systems with higher FH rates. Moreover, it presents the design and implementation of an original GNU Radio Companion block that utilizes the proposed algorithm. The target SDR platform is that of the Universal Software Radio Peripheral USRP-N210 paired with the RFX2400 daughter board. Our results show that the proposed algorithm achieves higher hopping rates of up to 5,000 hops/second.

Efficient Energy and Position Aware Routing Protocol for Wireless Sensor Networks

  • Shivalingagowda, Chaya;Jayasree, P.V.Y;Sah, Dinesh.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1929-1950
    • /
    • 2020
  • Reliable and secure data transmission in the application environment assisted by the wireless sensor network is one of the major challenges. Problem like blind forwarding and data inaccessibility affect the efficiency of overall infrastructure performance. This paper proposes routing protocol for forwarding and error recovery during packet loss. The same is achieved by energy and hops distance-based formulation of the routing mechanism. The reachability of the intermediate node to the source node is the major factor that helps in improving the lifetime of the network. On the other hand, intelligent hop selection increases the reliability over continuous data transmission. The number of hop count is factor of hop weight and available energy of the node. The comparison over the previous state of the art using QualNet-7.4 network simulator shows the effectiveness of proposed work in terms of overall energy conservation of network and reliable data delivery. The simulation results also show the elimination of blind forwarding and data inaccessibility.

Analytical Approach of Multicasting-supported Inter-Domain Mobility Management in Sensor-based Fast Proxy Mobile IPv6 Networks

  • Jang, Ha-Na;Jeong, Jong-Pil
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • IP-based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health care, home automation, environmental monitoring, industrial control, vehicle telematics, and agricultural monitoring. In all these applications, a fundamental issue is the mobility in the sensor network, particularly with regards to energy efficiency. Because of the energy inefficiency of network-based mobility management protocols, they can be supported via IP-WSNs. In this paper, we propose a network-based mobility-supported IP-WSN protocol called mSFP, or the mSFP: "Multicasting-supported Inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks". Based on [8,20], we present its network architecture and evaluate its performance by considering the signaling and mobility cost. Our analysis shows that the proposed scheme reduces the signaling cost, total cost, and mobility cost. With respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 7% and the total cost by 3%. With respect to the number of hops, the proposed scheme reduces the signaling cost by 6.9%, the total cost by 2.5%, and the mobility cost by 1.5%. With respect to the number of IP-WSN nodes, the proposed scheme reduces the mobility cost by 1.6%.

PMDV-hop: An effective range-free 3D localization scheme based on the particle swarm optimization in wireless sensor network

  • Wang, Wenjuan;Yang, Yuwang;Wang, Lei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.61-80
    • /
    • 2018
  • Location information of individual nodes is important in the implementation of necessary network functions. While extensive studies focus on localization techniques in 2D space, few approaches have been proposed for 3D positioning, which brings the location closer to the reality with more complex calculation consumptions for high accuracy. In this paper, an effective range-free localization scheme is proposed for 3D space localization, and the sensitivity of parameters is evaluated. Firstly, we present an improved algorithm (MDV-Hop), that the average distance per hop of the anchor nodes is calculated by root-mean-square error (RMSE), and is dynamically corrected in groups with the weighted RMSE based on group hops. For more improvement in accuracy, we expand particle swarm optimization (PSO) of intelligent optimization algorithms to MDV-Hop localization algorithm, called PMDV-hop, in which the parameters (inertia weight and trust coefficient) in PSO are calculated dynamically. Secondly, the effect of various localization parameters affecting the PMDV-hop performance is also present. The simulation results show that PMDV-hop performs better in positioning accuracy with limited energy.

Delay Tolerant Packet Forwarding Algorithm Based on Location Estimation for Micro Aerial Vehicle Networks

  • Li, Shiji;Hu, Guyu;Ding, Youwei;Zhou, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1377-1399
    • /
    • 2020
  • In search and rescue mission, micro aerial vehicles (MAVs) are typically used to capture image and video from an aerial perspective and transfer the data to the ground station. Because of the power limitation, a cluster of MAVs are required for a large search area, hence an ad-hoc wireless network must be maintained to transfer data more conveniently and fast. However, the unstable link and the intermittent connectivity between the MAVs caused by MAVs' movement may challenge the packet forwarding. This paper proposes a delay tolerant packet forwarding algorithm based on location estimation for MAV networks, called DTNest algorithm. In the algorithm, ferrying MAVs are used to transmit data between MAVs and the ground station, and the locations of both searching MAVs and ferrying MAVs are estimated to compute the distances between the MAVs and destination. The MAV that is closest to the destination is selected greedy to forward packet. If a MAV cannot find the next hop MAV using the greedy strategy, the packets will be stored and re-forwarded once again in the next time slot. The experiment results show that the proposed DTNest algorithm outperforms the typical DTNgeo algorithm in terms of packet delivery ratio and average routing hops.

Estimation of Formability for Sheet Metal Forming of Electronic Parts (전자 박판 부품의 가공성 평가에 대한 연구)

  • Lee, B.C.;Kang, S.Y.;Moon, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.104-114
    • /
    • 1996
  • For the improvement of productivity, the reduction of cost and time for manufacturing is mandatory, especially in the field of electromic industry. The study is concerned with a practical means of systematic assistance to formability estimation and selection of reliable design specification for electronic sheet metal parts. The objective of this research work is to develop a simulation system which hops to analyze the target processes with the finite element method and to acquire available design data quickly and exactly. The simulation system developed in the study consists of design verification, selection of optimal combination of parameters, knowledge acquisition and graphical user interface(GUI). Design verification is automatically carried out by using the finite element method. A data base management system and nomograms are utilized for knowledge acquisition. The developed system has been applied to some major sheet metal forming operations such as flanging, embossing, bending and blanking. According to the simulated results, the validation of the target processes has been confirmend. Analysis data, estimation rules of formability and graphical representation of the analysis have been employed for the designer's understanding and evaluation, thus providing a practical means of robust design and evaluation of forma- bility for producing electronic sheet metal parts.

  • PDF