• Title/Summary/Keyword: HOCs

Search Result 20, Processing Time 0.021 seconds

Enhanced Biodegradation of Contaminated Soil by Biosurfactant, Sophorolipid

  • Kang, Seok-Whan;Cho, Kwi-Joon;Kim, Eun-Ki
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.178-182
    • /
    • 1998
  • Bioremediation techniques have proved to be effective for restoring petroleum-contaminated soils. however some limitations still exist, especially biodegradation of hydrophobic organic compounds(HOCs) in soil is limited by their low solubility and sorption to solid surfaces. The principal objective of this study was to evaluate the effectiveness of biosurfactant sophorolipid on the biodegradation of hydrocarbons in soil. Experimental results showed that sophorolipid was not toxic to the HOC-degrading bacteria and enhanced biodegradation of HOCs in soil better than synthetic surfactants. when these models were treated with 1000mg/soil kg sophorolipid.

  • PDF

Effect of Dissolved Organic Matter and Cationic Surfactant on the Distribution of HOC in soil/water system (토양/수체 내 양이온 계면활성제와 용존유기물이 소수성유기화합물의 분포에 미치는 영향 연구)

  • 문정원;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.281-285
    • /
    • 2000
  • The effect of the presence of dissolved organic matters(DOM) on the binding of phenanthrene to cetylpyridinium chloride(CPC) coated sand was investigated. The distribution coefficient of phenanthrene increased with increase of sufactant coverage, and decreased with the presence of dissolved organic matters except for the 1.600mg/g coverage case. Both Aldrich humic acid and extracted dissolved organic matter showed the similar tendency. For the quantification of the overall distribution coefficient, this study presented mass distribution model and estimated the sorption equilibrium coefficients of hydrophobic organic compounds(HOCs) in multi system. The suggested model combined a series of sorption equilibrium relationships including the adsorption of DOMs on sorbents, the binding between HOCs and DOMs, and the sorption of HOCs on sorbents with or without DOMs.

  • PDF

Electrokinetic Soil Flushing with Nonionic Surfactant for Removal of Phenanthrene

  • 이유진;박지연;김상준;기대정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.356-359
    • /
    • 2003
  • Polycyclic aromatic hydrocarbons (PAHs) are representative hydrophobic organic carbons (HOCs). Surfactant-enhanced electrokinetic (EK) remediation is an innovative in-situ technology that can effectively remove HOCs from low-permeability soils. In this study, the electrokinetic remediation using Tergitol 15-S-12, a nonionic surfactant, was conducted for the removal of phenanthrene from kaolinite. Tergitol 15-S-12 was used at concentrations of 1.5, 2.0, 2.5 and 7.5 g/L to enhance the solubility of phenanthrene. When the surfactant solution was applied to EK system, high electrical potential gradient was maintained and the amount of electroosmotic flow decreased. Removal efficiency of phenanthrene was proportional to the concentration of Tergitol 15-S-12 because the solubility and mobility of phenanthrene was enhanced by surfactant micelle. Therefore, the suitable concentration of nonionic surfactant Tergitol 15-S-12 is expected to improve the removal efficiency of PAHs in EK remediation.

  • PDF

A Study on the Cleanup Process of HOCs-Contaminated Soil by Ex-situ Soil Washing Technology (Ex-situ 토양세척기법에 의한 소수성 유기오염물질로 오염된 토양의 정화에 관한 연구)

  • Choi, Sang-Il;Ryoo, Doo-Hyun;Jang, Min
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.99-107
    • /
    • 1997
  • In this study, a series of batch-scale tests were conducted to optimize the design parameters for the application of soil washing techniques to the hydrophobic organic compounds(HOCs)-contaminated soil and to find the effective methods for the recovery of surfactants from washing effluent by using solvent. Several nonionic surfactants (polyoxyethylene oleyl ester) and sophorolipid were applied to the artificially contaminated soil (4,000 mg n-dodecane/kg dry soil). The effects of washing time, concentration of surfactant solution, dilution ratio, and temperature on washing efficiencies were examined. Hydrophile-liphophile balance (HLB) number was proven to be one of the important parameters for soil washing. The HLB numbers of OA-5 and sophorolipid are too low to form a stable soil-water emulsion. They showed very low washing efficiencies less than 10e1o. If HLB number is in the proper range to form a stable soil-water emulsion, surfactant having higher solubility for HOCs shows higher washing efficiency. OA-14 having higher HLB number than OA-9 formed more stable soil-water emulsion. But its washing efficiency was about 20% due to a lower molar solubility ratio (MSR) than OA-9. OA-9, which forms a stable soil-water emulsion and has comparatively high sotubility for HOCs, showed about 60% washing efficiency by itself. To recover anthracene effectively from OA-9 washing effluent by using benzene as an organic solvent, desirable temperature and pH were $30^{\circ}C$ and 2, respectively.

  • PDF

Model Development of Surfactant Reuse by Activated Carbons in Soil Washing Process (토양세척 공정에서 활성탄을 이용한 계면활성제 재사용 모델 개발)

  • Ahn, Chi-Kyu;Kim, Young-Mi;Woo, Seung-Han;Park, Jong-Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.1-12
    • /
    • 2006
  • A model describing the distributions of surfactants and HOCs (hydrophobic organic chemicals) in surfactant/HOC/activated carbon systems for surfactant reuse in soil washing process was developed. The model simulation was conducted for the evaluation of the effect of concentrations of surfactant, HOC, or activated carbons. Phenanthrene as a target HOC, Triton X-100 as surfactant and three granular activated carbons with different particle sizes (4-12, 12-20, and 20-40 mesh) were used in the model simulation. The distributions of HOC were significantly affected by surfactant dosages, especially at around the CMC(s). The results of selectivities for phenanthrene were much larger than 1 at various concentrations of surfactants, phenanthrene and activated carbons, which mean that the selective adsorption of phenanthrene by activated carbons is a proper separation method from surfactant solution. The model can be applied for the design of the surfactant reuse process using activated carbons without extra experimental efforts.

Use of Biosurfactant for the Removal of Organic Pollutants in Soil/Groundwater (바이오 계면활성제에 의한 토양/지하수내 유기성 오염물질 제거)

  • Ko, Seok-Oh;Yoon, Seok-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.193-201
    • /
    • 2000
  • Partitioning of hydrophobic organic compounds (HOCs) to a biosurfactant, hydroxypropyl-${\beta}$-cyclodextrin (HPCD), was conducted to evaluate the feasibility of using HPCD to remove HOCs from soil/groundwater. HOC partitioning to HPCD was very fast, with over 95% of the complexation occurring within 10 min. Some influence of solution chemistry and HOC concentration on HOC-HPCD complex formation coefficients was observed. HPCD sorption on soil as quantified by both a fluorescence technique and total organic carbon measurements was negligible, indicating no significant affinity of HPCD for the solid phase. Although the HOC solubilization capability of HPCD was lower than that of synthetic surfactants such as SDS and Tween 80, HPCD can be effective in removing sorbed HOCs from a model subsurface environment, primarily because of its negligible sorption to the solid phase (i.e., all the HPCD added facilitates HOC elution). However, in contrast with conventional surfactants, HPCD becomes relatively less effective for HOC partitioning with increasing HOC size and hydrophobicity. Therefore, comparisons between HPCD and synthetic surfactants for enhanced remediation applications must consider the specific HOC(s) present and the potential for surfactant material losses to the solid phase, as well as other more generally recognized considerations such as material costs and potential toxicological effects.

  • PDF

A Study on the Application of Soil Washing Technology for HOCs-Contaminated Soil Using Mixed Surfactants (소수성 유기오염물질로 오염된 토양에 대한 혼합 계면활성제를 이용한 토양세척기법의 적용성 연구)

  • Choi, Sang-Il;Lee, Jai-Young;Jang, Min
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.103-108
    • /
    • 1997
  • A series of batch tests were conducted to evaluate the design parameters for the application of soil washing techniques to the hydrophobic organic compounds (HOCs)-contaminated soil using mixed surfactants. Because the mixed surfactants form different structures of molecular aggregates from single surfactant, they were applied to improve the washing efficiency. Kinds of surfactants added, mixing ratio, and total concentration of mixed surfactants were evaluated. The uncontaminated soil was obtained from a country hill near Nock-Chun Station in Seoul. The portion of soil passing #4 (4.75 mm) sieve was used. The pH, organic contents and cation exchange capacity were 4.4, 1.6% and 4.08 meq/100 g, respectively The soil was artificially contaminated by n-dodecane. The 5% solution of OA-5 and OA-14 (1:1) showed 86% washing efficency. The 4% solution of SDS and OA-5 (1:1) showed 95% washing efficiency.

  • PDF

Remediation of groundwater contaminated with hydrophobic organic compounds using biobarrier (소수성 유기오염물질로 오염된 지하수의 Biobarrier에 의한 복원)

  • 김영규;신원식;김영훈;송동의
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.114-117
    • /
    • 2002
  • Sorption and desorption studies were conducted to evaluate several media as a potential biobarrier for the remediation of groundwater contaminated with hydrophobic organic compounds (HOCs). Pahokee and Bion peats, Devonian Ohio shale, vermicompost, and 50% HDTMA-montmorillonite were used as model sorbents. Sorption and desorption isotherms were determined using the radiolabeled phenanthrene (Phe). Sorption capacity of Phe on several sorbents was in the order Ohio shale > 50% HDTMA-montmorillonite > vermicompost > Pahokee peat. Mineralization kinetics was investigated for Phe-sorbed sorbents using Pseudomonas putida 17484. Among the tested sorbents, active biodegradation of Phe was observed in shale and vermicompost: degradation in shale exhibited little lag time while that in shale showed a significant lag time. Results of this study indicate that sorbents used in this work can be utilized as permeable reactive biobarrier media for the remediation of HOC-contaminated groundwater.

  • PDF

Surfactant Sorption Effects on the Removal of Hydrophobic Organic Compounds (HOCs) from Subsurface (토양/지하수내 난분해성 유기오염물 제거시 계면활성제 흡착 영향)

  • 고석오
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.64-68
    • /
    • 1998
  • 본 연구는 오염토양/지하수의 정화를 위하여 사용되는 계면활성제 교정기술의 보다 현실적인 평가를 위하여 토양에 흡착된 계면활성제에 대한 소수성 유기오염물인 Naphthalene과 Phenanthrene의 흡수현상에 대한 연구결과를 나타내었다. 음이온 계면활성제인 Sodium Dodecyl Sulfate (SDS)와 중성 계면활성제인 Tween 80의 흡착곡선은 소수성 꼬리 (hydrophobic tails)간의 상호작용에 의하여 S-형 모양을 보이며 이들 흡착된 계면활성제는 Micelle로 존재하는 계면활성제에 비하여 유기오염물에 대한 보다 강한 흡수능력을 나타내었다. 결과에 나타난 흡수능력의 차이는 계면활성제가 흡착되어있거나 Micelle상태로 존재할 경우 다른 구조를 형성하기 때문이라 사료된다. 흡수된 계면활성제와 Micelle의 상호경쟁에 의하여 유기오염물의 부동성(immobility)을 나타내는 분배계수(distribution coefficient)는 계면활성제의 농도에 반비례하였다. 결론적으로 토양/지하수의 오염물 정화를 위하여 계면활성제 교정기술의 적용 시 고정상 (solid phase)에 있는 흡착 계면활성제에 의한 유기오염물의 지체현상 (retardation)을 고려하여야 한다.

  • PDF

Efficient Screening of Surfactant for Soil Washing (토양세척을 위한 계면활성제의 효과적 선정)

  • 신현무;이상화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.7-11
    • /
    • 1999
  • Soil washing process being operated in ex-situ mode using surfactants could be appropriate one of the most effective one for remediation. The choice of surfactants has been considered most significantly to accomplish tile reduction of expenditure and the increase of efficiency. This study was carried out screening test and solubility, washing experiment, and surfactant sorption experiments for 18 kinds of surfactant obtained. Results from each surfactant's PSR obtained by the slope indicated that nonionic surfactants have much higher solubility for HOCs than anion surfactants for that. The washing experiment to find out a removal efficiency of each surfactant's TPH, LE1017 and LE1019 showed high removal efficiency. Through on the result of estimating the extent of adsorption of surfactants for soils, nonion surfactants showed higher adsorption to soils than anion surfactants.

  • PDF