• Title/Summary/Keyword: HNS(High Nitrogen Steel)

Search Result 7, Processing Time 0.021 seconds

High Nitrogen-Bearing Austenitic Stainless Steels Resistant to Marine Corrosion

  • Kodama, Toshiaki;Katada, Yasuyuki;Baba, Haruo;Sagara, Masayuki
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.272-276
    • /
    • 2003
  • High nitrogen-bearing stainless steel (HNS) containing more than Imass% N was successfully created by means of pressurized electro-slag remelting (P-ESR) without the addition of manganese. Excellent localized corrosion resistant properties of the HNS were confirmed in terms of pitting and crevice corrosion in artificial seawater. The repassivation kinetics proved higher repassivation rate for HNS.

Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel (고질소강의 열간압연시 변형거동 및 압연효과)

  • Kim, Y.D.;Kim, D.K.;Lee, J.W.;Bae, W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

Hot and Cold Rolling Characteristic with High-Nitrogen Steel of Austenitic Stainless (HNS) (오스테나이트계 고질소 스테인레스 강의 열간 및 냉간 압연특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Kim, D.K.;Kim, Y.D.;Cha, D.J.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.99-101
    • /
    • 2008
  • At 21st century, material development concepts were changed to fulfill the environmental friendly demands. This study is to study the effect of pressurized nitrogen gas and manganese in high nitrogen austenitic stainless steel(HNS) in which N and Mn elements substitute the nickel element. 100kg HNS ingots were made by Pressurized Vacuum Induction Melting(P-VIM) and were forged according to free forging process. As forged HNS were hot and cold rolled by pilot scale rolling machine. Depending on the rolling condition, the mechanical properties of HNS were changed. The roll thrust and sheet folding showed asymmetry condition between work and drive side during cold and hot rolling. The purpose of this study are to improve workability the hot and cold rolling machine and to set the conditions for establishing the rolling process.

  • PDF

Deformation behavior of the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel under different strain rate conditions (Fe-18Cr-14Mn-4Ni-0.9N 고질소 내식강의 고온 석출과 변형률 속도에 따른 변형특성 연구)

  • Nam, S.M.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.421-424
    • /
    • 2006
  • High nitrogen steels (HNS) exhibit both high strength and ductility during tensile deformation. In the present study the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel was heat treated at $1000^{\circ}C$ and $1100^{\circ}C$ to produce $Cr_2N$ precipitates in austenite matrix and full austenite microstructures, respectively. Tensile tests of the heat treated specimens were performed at two different strain rates of 0.05/sec and 0.00005/sec. Each tensile curve of the specimens could be well characterized by the the modified Ludwik equation. Plastic deformation of the steel was adequately represented by the four parameters of the modified Ludwik equation. At 0.05/s strain rate, the specimen with the $Cr_2N$ precipitate exhibited higher strength than the full austenite specimen, while the full austenite specimen showed better mechanical properties at 0.00005/s strain rate. It was found that the $Cr_2N$ precipitates influences deformation behavior of the high nitrogen steel significantly.

  • PDF

Forged Product Characteristic and Cold Rolling Simulation for High-Nitrogen Stainless Steel (HNS) (TP304계 고질소 스테인레스강의 단조특성과 냉간압연 모사)

  • Lee, M.R.;Lee, J.W.;Kim, B.K.;Kim, Y.D.;Shin, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.310-313
    • /
    • 2009
  • Several high nitrogen stainless steel ingots(100kg) were fabricated with changing Ni and $[N]_2$ contents by Pressurized Vacuum Induction Melting(P_VIM). After free forging process, chemical compositions, microstructure and mechanical properties were estimated. Hardness was increased with the increase of $[N]_2$ content. Furthermore, microstructure including a lot of tempering twins was observed with optical microscope. Mechanical properties were estimated as function of solution treatment temperature and cooling method(air/water) under duration time of 1 hr on sample that were fabricated with Ni content under the atmospheric $[N]_2$ pressure. At solution treatment range of $1050{\sim}1100^{\circ}C$, hardness was decreased with the increase of solution temperature and there were little discrepancy of microstructure and hardness with cooling method. Computer simulation was carried out in order to inspect pass schedule in cold rolling process. When the condition of simulation was roll speed of 2.5mpm, rolling rate $15{\sim}17%$ per pass, it was ascertained that the formation such as deformation by sticking and lamellar sliver etc. was restricted from a simulation.

  • PDF

A Study on the Development of Hot Rolling Process for 18Cr-10Mn-0.44N2 (18Cr-10Mn-0.44N2 고질소강의 열연공정개발에 관한 연구)

  • Kim, Y.D.;Cho, J.R.;Lee, J.W.;Bae, W.B.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.296-302
    • /
    • 2011
  • The objective of this paper is to determine the effect of process parameters on the behavior of a 18Cr-10Mn-$0.44N_2$ nitrogen steel sample deformed by hot rolling. Compression tests were carried out at high temperatures to determine the flow stresses needed for a finite element(FE) analysis. The strain rate, ranging from 0.1 to $1.0s^{-1}$, significantly affected the flow stress at temperatures higher than $1,000^{\circ}C$. Non-isothermal rolling simulations and laboratory rolling tests were performed with plate specimens 14.5mm thick, 135mm wide and 226mm long. A rolling reduction of 15% per pass leading to a cumulative rolling reduction of 60% was determined as optimal. The extension ratio of 176.5% in the length direction was about 30.4 times greater than the extension ratio of 5.8% in the width direction. Isotropic properties for tensile strength, microstructure and grain size were measured after mock-up hot rolling tests. The results from the mockup tests were found to be in good agreement with those of the simulations.

Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs

  • Shin, Jong-Ho;Kim, Young-Deak;Lee, Jong-Wook
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1412-1421
    • /
    • 2018
  • Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and $292{\mu}m$) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.