• Title/Summary/Keyword: HNS

Search Result 198, Processing Time 0.028 seconds

HNS 사고사례코드 설계에 관한 연구

  • Ha, Min-Jae;Jang, Ha-Yong;Yun, Jong-Hwi;Lee, Eun-Bang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.84-86
    • /
    • 2015
  • 최근 해상에서의 HNS 물동량 증가와 HNS 사고 유형 및 규모의 대형화, 사고대응체계 수립 필요성 대두 등과 같은 이유들로 인해 HNS 유출사고에 대한 중요성이 증가하고 있다. 본 연구에서는 HNS 사고사례를 표준화하기 위한 기초설계 연구를 수행함으로써 향후 HNS 유출사고를 표준화할 수 있는 HNS 사고사례코드를 개발하고자 한다.

  • PDF

Detection of Toluene Hazardous and Noxious Substances (HNS) Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 위험·유해물질 톨루엔 탐지)

  • Park, Jae-Jin;Park, Kyung-Ae;Foucher, Pierre-Yves;Kim, Tae-Sung;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.623-631
    • /
    • 2021
  • The increased transport of marine hazardous and noxious substances (HNS) has resulted in frequent HNS spill accidents domestically and internationally. There are about 6,000 species of HNS internationally, and most of them have toxic properties. When an accidental HNS spill occurs, it can destroys the marine ecosystem and can damage life and property due to explosion and fire. Constructing a spectral library of HNS according to wavelength and developing a detection algorithm would help prepare for accidents. In this study, a ground HNS spill experiment was conducted in France. The toluene spectrum was determined through hyperspectral sensor measurements. HNS present in the hyperspectral images were detected by applying the spectral mixture algorithm. Preprocessing principal component analysis (PCA) removed noise and performed dimensional compression. The endmember spectra of toluene and seawater were extracted through the N-FINDR technique. By calculating the abundance fraction of toluene and seawater based on the spectrum, the detection accuracy of HNS in all pixels was presented as a probability. The probability was compared with radiance images at a wavelength of 418.15 nm to select abundance fractions with maximum detection accuracy. The accuracy exceeded 99% at a ratio of approximately 42%. Response to marine spills of HNS are presently impeded by the restricted access to the site because of high risk of exposure to toxic compounds. The present experimental and detection results could help estimate the area of contamination with HNS based on hyperspectral remote sensing.

Comparison of Response Systems and Education Courses against HNS Spill Incidents between Land and Sea in Korea (국내 HNS 사고 대응체계 및 교육과정에 관한 육상과 해상의 비교)

  • Kim, Kwang-Soo;Gang, Jin Hee;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2015
  • As the type of Hazardous and Noxious Substances(HNS) becomes various and the transport volume of HNS increases, HNS spill incidents occur frequently on land and the sea. In view of various damages to human lives and properties by HNS spills, it is necessary to educate and train professional personnel in preparation for and response to potential HNS spills. This study shows the current state of response systems and education courses against HNS spill incidents on land and the sea to compare those with each other between land and sea in Korea. Incident command system on land are basically similar to that at sea, but leading authority which is responsible for combating HNS spills at sea is changeable depending on the location of HNS spill, as it were, Korea Coast Guard(KCG) is responsible for urgent response to HNS spill at sea, while municipalities are responsible for the response to HNS drifted ashore. Education courses for HNS responders on land are established at National Fire Service Academy(NFSA), National Institute of Chemical Safety(NICS), etc., and are diverse. Education and training courses for HNS responder at sea are established at Korea Coast Guard Academy(KCGA) and Marine Environment Research & Training Institute(MERTI), and are comparatively simple. Education courses for dangerous cargo handlers who work in port where land is linked to the sea are established at Korea Maritime Dangerous Goods Inspection & Research Institute(KOMDI), Korea Port Training Institute(KPTI) and Korea Institute of Maritime and Fisheries Technology(KIMFT). Through the comparison of education courses for HNS responders between land and sea, some recommendations such as extension of education targets, division of an existing integrated HNS course into two courses composed of operational level and manager level with respective refresh course, on-line cyber course and joint inter-educational institute course in cooperation with other relevant institutes are proposed for the improvement in education courses of KCG and KOEM(Korea Marine Environment Management Corporation) to educate and train professionals for combating HNS spills at sea in Korea.

Developing status of the Preparedness and Response System for HNS accident (HNS 해상사고 대비.대응체제구축 추진현황)

  • Im, T.S.;Lee, S.H.;Choi, J.W.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.65-70
    • /
    • 2006
  • The regulation of HNS has been intensified by the international trends including OPRC-HNS Protocol and '96 Convention which was driven by the high amounts of cargo. Due to the characteristics of HNS that would possibly bring potential damage with personnel and assets, effective management and prompt actions are required definitely. In order to respond effectively against HNS accidents, Korea Coast Guard (KCG) is in the process q development of HNS accident response manual and information system which allows On-Scene Coordinator(OSC) and personnels for rescue including an information for hazardous materials, sensitive area to be affected, solution methods and more. Furthermore, KCG is also building up establishment of national and local contingency plans for HNS in accordance with OPRC-HNS Protocol. It is also advised to proceed for the government to solve the anticipated obstacles that include protection equipments to get close to the site, experts allowing to manage accidents and organizations specialized for overall HNS related matters. The proposed issues described above are planned to conducted on basis of government.

  • PDF

Effect of Accession to OPRC-HNS Protocol on Korean Industry (OPRC-HNS 의정서 가입이 국내 산업계에 미치는 영향)

  • Choi, Jong-Wook;Lee, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.37-42
    • /
    • 2007
  • Since the OPRC-HNS Protocol entered into forced in the June of 2007, the potential effects on industrial circles are encouraged to be analyzed according to the obligatory regulations listed in the Protocols. This study was conducted on the quantitative analysis of the possible effect on the industrial circles if Korea accedes to OPRC-HNS Protocol. In spite of any burdens caused by keeping "accident emergency program memorandum" and performing "education and any training program for the crews", potential decrease of insurance fee is in possibility provided it follows. In addition, the oil refinery and petrochemical industries may also have burdens for potential costs for acquiring any materials including equipments and fees for education and training related to HNS. However, minimizing any costs by swift response against accidents would be big advantage that comes with paying of small amounts of expense by international convention related to HNS.

  • PDF

Setting of Regional Priorities in Preparedness for Marine HNS Spill Accident in Korea by using Concentration Index (집중도 지수를 활용한 HNS 사고 대비 우선지역 선정)

  • Ha, Min-Jae;Jang, Ha-Lyong;Kim, Tae-Hyung;Yun, Jong-Hwui;Lee, Moon-Jin;Lee, Eun-Bang
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.437-444
    • /
    • 2017
  • The concentration of the HNS Accident for each region was confirmed to prepare against an HNS Spill accident by using a Concentration Index which is used to assess industry concentration trend. This is to present the HNS Accident Concentration Index by combining HNS Accident Scale Concentration Index and an HNS Accident Frequency Concentration Index based on the data of marine spill accidents including the HNS accident. Based on the HNS Accident Concentration Index, Ulsan was identified as a top priority region for preparedness, Yeosu, Busan and Taean were identified as priority regions for preparedness, Gunsan, Mokpo, Wando, Incheon, Tongyeong, Pyeongtaek and Pohang were identified as necessary regions for preparedness, Donghae, Boryeong, Buan, Seogwipo, Sokcho, Jeju and Changwon, in which no marine spill accidents occurred, were identified as support regions for preparedness.

Design and Implementation of an HNS Accident Tracking System for Rapid Decision Making (신속한 의사결정을 위한 HNS 사고이력관리시스템 설계 및 구현)

  • Jang, Ha-Lyong;Ha, Min-Jae;Jang, Ha-Seek;Yun, Jong-Hwui;Lee, Eun-Bang;Lee, Moon-jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.168-176
    • /
    • 2017
  • HNS accidents involve large-scale fires and explosions, causing numerous human casualties and extreme environmental pollution in the surrounding area. The widespread diffusion of effects should be prevented through rapid decision making. In this study, a high-quality, standardized, and digitized HNS accident databases has been generated based on the HNS standard code proposed. Furthermore, the HNS Accident Tracking System (HATS) was applied and implemented to allow for systematic integration management and sharing. In addition, statistical analysis was performed on 76 cases of domestic HNS accident data collected over 23 years using HATS. In Korea, an average of 3.3 HNS accidents occurred each year and major HNS accident factors were Springs (41 %), Aprons (51 %), Chemical Carriers (49 %), Crew's Fault (45 %) and Xylenes (12 %). (The number in parentheses is the percentage of HNS accident factors for each HNS accident classification)

A Basic Study On the Development of the Computerized Response Aid System for HNS (HNS 방제정보지원시스템 개발에 관한 기초 연구)

  • Im Chang-Ho;No Chang-Gyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.215-220
    • /
    • 2006
  • The oil on board is a major source of sea pollutions. Recently, according to increasement of Hazardous and noxious substances carrying on board. Our greatest concern is how to response HNS spread pollution, addition to response oil spill pollution. This is first aim how can take a speedy and precise response. So introduce to development of the computerized response aid system for HNS.

  • PDF

A Study on the Improvement of the Education and Training System for Response to Marine Chemical Incidents in Korea - Based on the Comparison of Systems between Korea and Foreign Countries - (해상화학사고 대응을 위한 국내 교육훈련체계 개선에 관한 연구 - 국내 체계와 외국 체계의 비교를 기반으로 -)

  • Kim, Kwang-Soo;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.847-857
    • /
    • 2017
  • The present situations of the education and training systems for the response to marine HNS spill incidents in domestic and foreign countries were reviewed and the plans to improve domestic system were suggested on the basis of the comparison between domestic and foreign education systems. There were almost no private education and training institutions in Korea, and they have not been activated, compared with those of foreign countries such as USA, Canada, Australia and UK. The domestic marine HNS-related education has been implemented uniformly under Korean government initiative. In addition, there were differences in the targets and duration of the education offered by Korea Coast Guard Academy (KCGA) and Marine Environment Research & Training Institute (MERTI) in Korea. Domestic HNS-related curriculum was relatively simple, compared with the curricula of foreign countries, and has not accepted two levels (operational level and manager level) required in HNS model courses of International Maritime Organization (IMO). The domestic education and training period was short relatively to those of foreign countries. The following suggestions were made to improve the education and training system for the response to domestic marine chemical incidents. In the short term, an HNS education and training management consultation body (tentative name) should be established, with both KCGA and MERTI participating jointly while maintaining the current system of the two institutions (KCGA and MERTI) simultaneously. In the more distant and long term, the HNS-related departments of KCGA and MERTI should be incorporated into a National Marine HNS Response Academy (tentative name) as unified system to enable international competitiveness.