• Title/Summary/Keyword: HMM algorithm

Search Result 241, Processing Time 0.026 seconds

Two-Dimensional Model of Hidden Markov Mesh

  • Sin, Bong-Kee
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.772-779
    • /
    • 2006
  • The new model proposed in this paper is the hidden Markov mesh model or the 2D HMM with the causality of top-down and left-right direction. With the addition of the causality constraint, two algorithms for the evaluation of a model and the maximum likelihood estimation of model parameters have been developed theoretically which are based on the forward-backward algorithm. It is a more natural extension of the 1D HMM than other 2D models. The proposed method will provide a useful way of modeling highly variable image patterns such as offline cursive characters.

  • PDF

On the Use of a Frame-Correlated HMM for Speech Recognition (Frame-Correlated HMM을 이용한 음성 인식)

  • 김남수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.223-228
    • /
    • 1994
  • We propose a novel method to incorporate temporal correlations into a speech recognition system based on the conventional hidden Markov model. With the proposed method using the extended logarithmic pool, we approximate a joint conditional PD by separate conditional PD's associated with respective components of conditions. We provide a constrained optimization algorithm with which we can find the optimal value for the pooling weights. The results in the experiments of speaker-independent continuous speech recognition with frame correlations show error reduction by 13.7% with the proposed methods as compared to that without frame correlations.

  • PDF

A Recognition Time Reduction Algorithm for Large-Vocabulary Speech Recognition (대용량 음성인식을 위한 인식기간 감축 알고리즘)

  • Koo, Jun-Mo;Un, Chong-Kwan;,
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.31-36
    • /
    • 1991
  • We propose an efficient pre-classification algorithm extracting candidate words to reduce the recognition time in a large-vocabulary recognition system and also propose the use of spectral and temporal smoothing of the observation probability to improve its classification performance. The proposed algorithm computes the coarse likelihood score for each word in a lexicon using the observation probabilities of speech spectra and duration information of recognition units. With the proposed approach we could reduce the computational amount by 74% with slight degradation of recognition accuracy in 1160-word recognition system based on the phoneme-level HMM. Also, we observed that the proposed coarse likelihood score computation algorithm is a good estimator of the likelihood score computed by the Viterbi algorithm.

  • PDF

Text-Dependent Speaker Recognition Using DTW and State-Dependent Parameter Weighting Method of HMM (DTW 와 HMM의 상태별 파라미터 가중 기법을 이용한 문맥 종속형 화자인식)

  • 이철희;정성환;김종교
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.77-80
    • /
    • 2000
  • In this paper, the speaker-recognition process based on both DTW and discrete HMM was performed using the method to evaluate state-dependent parameter weighting from training data so as the personal audio-characteristics are to be well reflected. In the suggested method below, we found the optimal state sequence using the Viterbi algorithm. The optimal path could be evaluated after comparing the sequence of base pattern which already have, with that of the other patterns. After that the frame of which the pattern was matched with the base pattern in the same state are to be found so that the reference pattern can be gained by weighting on the numbers of matched frames.

  • PDF

Enhanced Independent Component Analysis of Temporal Human Expressions Using Hidden Markov model

  • Lee, J.J.;Uddin, Zia;Kim, T.S.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.487-492
    • /
    • 2008
  • Facial expression recognition is an intensive research area for designing Human Computer Interfaces. In this work, we present a new facial expression recognition system utilizing Enhanced Independent Component Analysis (EICA) for feature extraction and discrete Hidden Markov Model (HMM) for recognition. Our proposed approach for the first time deals with sequential images of emotion-specific facial data analyzed with EICA and recognized with HMM. Performance of our proposed system has been compared to the conventional approaches where Principal and Independent Component Analysis are utilized for feature extraction. Our preliminary results show that our proposed algorithm produces improved recognition rates in comparison to previous works.

  • PDF

Dynamic Human Activity Recognition Based on Improved FNN Model

  • Xu, Wenkai;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.417-424
    • /
    • 2012
  • In this paper, we propose an automatic system that recognizes dynamic human gestures activity, including Arabic numbers from 0 to 9. We assume the gesture trajectory is almost in a plane that called principal gesture plane, then the Least Squares Method is used to estimate the plane and project the 3-D trajectory model onto the principal. An improved FNN model combined with HMM is proposed for dynamic gesture recognition, which combines ability of HMM model for temporal data modeling with that of fuzzy neural network. The proposed algorithm shows that satisfactory performance and high recognition rate.

Two-Dimensional Hidden Markov Mesh Chain Algorithms for Image Dcoding (이차원 영상해석을 위한 은닉 마프코프 메쉬 체인 알고리즘)

  • Sin, Bong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1852-1860
    • /
    • 2000
  • Distinct from the Markov random field or pseudo 2D HMM models for image analysis, this paper proposes a new model of 2D hidden Markov mesh chain(HMMM) model which subsumes the definitions of and the assumptions underlying the conventional HMM. The proposed model is a new theoretical realization of 2D HMM with the causality of top-down and left-right progression and the complete lattice constraint. These two conditions enable an efficient mesh decoding for model estimation and a recursive maximum likelihood estimation of model parameters. Those algorithms are developed in theoretical perspective and, in particular, the training algorithm, it is proved, attains the optimal set of parameters.

  • PDF

Emotion Recognition using Prosodic Feature Vector and Gaussian Mixture Model (운율 특성 벡터와 가우시안 혼합 모델을 이용한 감정인식)

  • Kwak, Hyun-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.762-766
    • /
    • 2002
  • This paper describes the emotion recognition algorithm using HMM(Hidden Markov Model) method. The relation between the mechanic system and the human has just been unilateral so far. This is the why people don't want to get familiar with multi-service robots of today. If the function of the emotion recognition is granted to the robot system, the concept of the mechanic part will be changed a lot. Pitch and Energy extracted from the human speech are good and important factors to classify the each emotion (neutral, happy, sad and angry etc.), which are called prosodic features. HMM is the powerful and effective theory among several methods to construct the statistical model with characteristic vector which is made up with the mixture of prosodic features

  • PDF

A study on analysis of abdominal EMG using Hmm-Gmm algorithm (HMM-GMM 방식을 이용한 복부 근전도 분석에 관한 연구)

  • Gwon, Jang-U;Kim, Jeong-Ho;Kim, Hyeon-Seong;Yun, Dong-Eop;Choe, Heung-Ho
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2007.05a
    • /
    • pp.121-124
    • /
    • 2007
  • 최근 각종 질환의 원인이 되고 있는 비만은 심각한 사회문제로 대두되고 있으며, 이를 해결하기 위해 비만관리를 위한 측정 시스템의 필요성이 증가하고 있다. 본 논문은 비만관리를 위해 복부의 근전도 신호를 분석해서 언제 어디서든 본인의 건강상태를 체크하여 적절한 의료 서비스를 받을 수 있는 측정 시스템에 관한 연구이다. 복부 근전도 신호 분석을 위해서 에너지 검출, 신호 특징 추출, 상태 분류 및 인식 등을 위한 알고리즘을 제안한다. 이 신호 분석 알고리즘을 측정 시스템에 적용하여 복부의 비만도 및 복부의 근력을 평가하여 건강상태에 대한 적절한 평가를 제공하는 시스템을 제안한다.

  • PDF

Implementation of Hidden Markov Model based Speech Recognition System for Teaching Autonomous Mobile Robot (자율이동로봇의 명령 교시를 위한 HMM 기반 음성인식시스템의 구현)

  • 조현수;박민규;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.281-281
    • /
    • 2000
  • This paper presents an implementation of speech recognition system for teaching an autonomous mobile robot. The use of human speech as the teaching method provides more convenient user-interface for the mobile robot. In this study, for easily teaching the mobile robot, a study on the autonomous mobile robot with the function of speech recognition is tried. In speech recognition system, a speech recognition algorithm using HMM(Hidden Markov Model) is presented to recognize Korean word. Filter-bank analysis model is used to extract of features as the spectral analysis method. A recognized word is converted to command for the control of robot navigation.

  • PDF