• Title/Summary/Keyword: HMM 확률 보정

Search Result 3, Processing Time 0.019 seconds

Performance Improvement in Speech Recognition by Weighting HMM Likelihood (은닉 마코프 모델 확률 보정을 이용한 음성 인식 성능 향상)

  • 권태희;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • In this paper, assuming that the score of speech utterance is the product of HMM log likelihood and HMM weight, we propose a new method that HMM weights are adapted iteratively like the general MCE training. The proposed method adjusts HMM weights for better performance using delta coefficient defined in terms of misclassification measure. Therefore, the parameter estimation and the Viterbi algorithms of conventional 1:.um can be easily applied to the proposed model by constraining the sum of HMM weights to the number of HMMs in an HMM set. Comparing with the general segmental MCE training approach, computing time decreases by reducing the number of parameters to estimate and avoiding gradient calculation through the optimal state sequence. To evaluate the performance of HMM-based speech recognizer by weighting HMM likelihood, we perform Korean isolated digit recognition experiments. The experimental results show better performance than the MCE algorithm with state weighting.

Isolated-Word Recognition Using Neural Network and Hidden Markov Model (Neural-HMM을 이용한 고립단어 인식)

  • 김연수;김창석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1199-1205
    • /
    • 1992
  • In this paper, a Korean word recognition method which usese Neural Network and Hidden Markov Models(HMM) is proposed to improve a recognition rate with a small amount of learning data. The method reduces the fluctuation due to personal differences which is a problem to a HMM recognition system. In this method, effective recognizer is designed by the complement of each recognition result of the Hidden Markov Models(HMM) and Neural Network. In order to evaluate this model, word recognition experiment is carried out for 28 cities which is DDD area names uttered by two male and a female in twenties. As a result of testing HMM with 8 state, codeword is 64, the recognition rate 91[%], as a result of testing Neural network(NN) with 64 codeword the recognition rate is 89[%]. Finally, as a result of testing NN-HMM with 64 codeword which the best condition in former tests, the recognition rate is 95[%].

  • PDF

Post-Processing of Speech Recognition Using User Utterance Sequential Pattern (사용자 발화 순차패턴을 이용한 음성인식 후처리)

  • Song, Won-Moon;Kim, Eun-Ju;Kim, Myung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.709-711
    • /
    • 2005
  • 최근 음성인식 분야에서는 발화된 음성의 단순한 신호 처리위주의 인식 결과로부터 좀 더 신뢰할 수 있는 결과를 얻기 위하여 여러 가지 후처리 기법들이 연구되고 있다. 본 논문에서는 개인 사용자를 위한 음성 명령어 인식 환경에서 사용자의 발화 정보를 후처리에 적용함으로써 사용자 정보를 고려한 음성인식 후처리 기법을 제안한다. 먼저 이전에 사용했던 음성 명령어들로부터 명령어 발화 순차 패턴 규칙을 추출 한 후 사용자가 사전에 발화한 명령어를 바탕으로 구성된 순차 패턴을 비교하여 순차 규칙상 얻어 질 수 있는 단어를 결정한다. 이렇게 얻어진 단어를 고려하여 음성인식기 인식단어 후보들의 확률값을 적절히 보정한 후 최종 인식 단어를 재결정한다. 이러한 과정에서 적절한 보정을 위하여 발화 순차 패턴의 신뢰도와 인식기의 결과단어를 고려한 보정 방법을 제안한다. 실험을 통하여 제안한 후처리를 이용한 음성인식이 HMM을 이용한 기본 음성인식에 비해 오류율을 $15\%$이상 낮추어 인식률에 상당한 기여를 하였음을 확인할 수 있다.

  • PDF