• Title, Summary, Keyword: HMM

Search Result 919, Processing Time 0.051 seconds

A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System (Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.30-39
    • /
    • 2003
  • In this paper, we carried out the performance evaluation of HM-Net(Hidden Markov Network) speech recognition system for Korean speech databases. We adopted to construct acoustic models using the HM-Nets modified by HMMs(Hidden Markov Models), which are widely used as the statistical modeling methods. HM-Nets are carried out the state splitting for contextual and temporal domain by PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) algorithm, which is modified the original SSS algorithm. Especially it adopted the phonetic decision tree to effectively express the context information not appear in training speech data on contextual domain state splitting. In case of temporal domain state splitting, to effectively represent information of each phoneme maintenance in the state splitting is carried out, and then the optimal model network of triphone types are constructed by in the parameter. Speech recognition was performed using the one-pass Viterbi beam search algorithm with phone-pair/word-pair grammar for phoneme/word recognition, respectively and using the multi-pass search algorithm with n-gram language models for sentence recognition. The tree-structured lexicon was used in order to decrease the number of nodes by sharing the same prefixes among words. In this paper, the performance evaluation of HM-Net speech recognition system is carried out for various recognition conditions. Through the experiments, we verified that it has very superior recognition performance compared with the previous introduced recognition system.

  • PDF

Design of a MapReduce-Based Mobility Pattern Mining System for Next Place Prediction (다음 장소 예측을 위한 맵리듀스 기반의 이동 패턴 마이닝 시스템 설계)

  • Kim, Jongwhan;Lee, Seokjun;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.321-328
    • /
    • 2014
  • In this paper, we present a MapReduce-based mobility pattern mining system which can predict efficiently the next place of mobile users. It learns the mobility pattern model of each user, represented by Hidden Markov Models(HMM), from a large-scale trajectory dataset, and then predicts the next place for the user to visit by applying the learned models to the current trajectory. Our system consists of two parts: the back-end part, in which the mobility pattern models are learned for individual users, and the front-end part, where the next place for a certain user to visit is predicted based on the mobility pattern models. While the back-end part comprises of three distinct MapReduce modules for POI extraction, trajectory transformation, and mobility pattern model learning, the front-end part has two different modules for candidate route generation and next place prediction. Map and reduce functions of each module in our system were designed to utilize the underlying Hadoop infrastructure enough to maximize the parallel processing. We performed experiments to evaluate the performance of the proposed system by using a large-scale open benchmark dataset, GeoLife, and then could make sure of high performance of our system as results of the experiments.

Real-Time Place Recognition for Augmented Mobile Information Systems (이동형 정보 증강 시스템을 위한 실시간 장소 인식)

  • Oh, Su-Jin;Nam, Yang-Hee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.477-481
    • /
    • 2008
  • Place recognition is necessary for a mobile user to be provided with place-dependent information. This paper proposes real-time video based place recognition system that identifies users' current place while moving in the building. As for the feature extraction of a scene, there have been existing methods based on global feature analysis that has drawback of sensitive-ness for the case of partial occlusion and noises. There have also been local feature based methods that usually attempted object recognition which seemed hard to be applied in real-time system because of high computational cost. On the other hand, researches using statistical methods such as HMM(hidden Markov models) or bayesian networks have been used to derive place recognition result from the feature data. The former is, however, not practical because it requires huge amounts of efforts to gather the training data while the latter usually depends on object recognition only. This paper proposes a combined approach of global and local feature analysis for feature extraction to complement both approaches' drawbacks. The proposed method is applied to a mobile information system and shows real-time performance with competitive recognition result.

A Study on the automatic vehicle monitoring system based on computer vision technology (컴퓨터 비전 기술을 기반으로 한 자동 차량 감시 시스템 연구)

  • Cheong, Ha-Young;Choi, Chong-Hwan;Choi, Young-Gyu;Kim, Hyon-Yul;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • In this paper, we has proposed an automatic vehicle monitoring system based on computer vision technology. The real-time display system has displayed a system that can be performed in automatic monitoring and control while meeting the essential requirements of ITS. Another advantage has that for a powerful vehicle tracking, the main obstacle handing system, which has the shadow tracking of moving objects. In order to obtain all kinds of information from the tracked vehicle image, the vehicle must be clearly displayed on the surveillance screen. Over time, it's necessary to precisely control the vehicle, and a three-dimensional model-based approach has been also necessary. In general, each type of vehicle has represented by the skeleton of the object or wire frame model, and the trajectory of the vehicle can be measured with high precision in a 3D-based manner even if the system has not running in real time. In this paper, we has applied on segmentation method to vehicle, background, and shadow. The validity of the low level vehicle control tracker was also detected through speed tracking of the speeding car. In conclusion, we intended to improve the improved tracking method in the tracking control system and to develop the highway monitoring and control system.

A Study on the Development of Embedded Serial Multi-modal Biometrics Recognition System (임베디드 직렬 다중 생체 인식 시스템 개발에 관한 연구)

  • Kim, Joeng-Hoon;Kwon, Soon-Ryang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • The recent fingerprint recognition system has unstable factors, such as copy of fingerprint patterns and hacking of fingerprint feature point, which mali cause significant system error. Thus, in this research, we used the fingerprint as the main recognition device and then implemented the multi-biometric recognition system in serial using the speech recognition which has been widely used recently. As a multi-biometric recognition system, once the speech is successfully recognized, the fingerprint recognition process is run. In addition, speaker-dependent DTW(Dynamic Time Warping) algorithm is used among existing speech recognition algorithms (VQ, DTW, HMM, NN) for effective real-time process while KSOM (Kohonen Self-Organizing feature Map) algorithm, which is the artificial intelligence method, is applied for the fingerprint recognition system because of its calculation amount. The experiment of multi-biometric recognition system implemented in this research showed 2 to $7\%$ lower FRR (False Rejection Ratio) than single recognition systems using each fingerprints or voice, but zero FAR (False Acceptance Ratio), which is the most important factor in the recognition system. Moreover, there is almost no difference in the recognition time(average 1.5 seconds) comparing with other existing single biometric recognition systems; therefore, it is proved that the multi-biometric recognition system implemented is more efficient security system than single recognition systems based on various experiments.

A Study on Measuring the Efficiency of Global Ocean Carriers by Using Data Envelopment Analysis (DEA를 활용한 글로벌해운선사의 효율성측정)

  • Bang, Hee-Seok;Kang, Hyo-Won
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.1
    • /
    • pp.213-234
    • /
    • 2011
  • The literature on efficiency of the maritime and shipping industry has typically focused on container ports and terminals. The study presented in this paper uses data envelopment analysis to evaluate ocean carriers based on financial and operational data from 2004 to 2007. A comparison is made up of the efficiency of global ocean carriers in efficiency of financial and operational performance respectively. A positive correlation is shown between the input and output data. In the static-efficiency analysis, we describe CCR, BCC and scale efficiency of Global Ocean Carriers in 2007. And we also provide about the stability and trend of their efficiency for four years (2004-2007) in the dynamic-efficiency analysis. The empirical results validate the necessity of restoring freight rates to facilitate the efficiency of the global ocean carriers supported by adjust of the supply of containership space. The study provides a basis for estimating the competitiveness of international shipping companies, for benchmarking best practice and for identifying the specific factors and causes of inefficiency.

Speed-Power Performance Analysis of an Existing 8,600 TEU Container Ship using SPA(Ship Performance Analysis) Program and Discussion on Wind-Resistance Coefficients

  • Shin, Myung-Soo;Ki, Min Suk;Park, Beom Jin;Lee, Gyeong Joong;Lee, Yeong Yeon;Kim, Yeongseon;Lee, Sang Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.294-303
    • /
    • 2020
  • This study discusses data collection, calculation of wind and wave-induced resistance, and speed-power analysis of an 8,600 TEU container ship. Data acquisition system of the ship operator was improved to obtain the data necessary for the analysis, which was accomplished using SPA (Ship Performance Analysis, Park et al., 2019) in conformation with ISO15016:2015. From a previous operation profile of the container, the standard operating conditions of mean draft were 12.5 m and 13.6 m, which were defined with the mean stowage configuration of each condition. Model tests, including the load-variation test, were conducted to validate new ship performance and for the speed-power analysis. The major part of the added resistance of container ship is due to the wind. To check the reliability of wind-resistance calculation results, the resistance coefficients, added resistance, and speed-power analysis results using the Fujiwara regression formula (ISO15016:2015) and Computational fluid dynamics (Ryu et al., 2016; Jeon et al., 2017) analysis were compared. Wind speed and direction measured using an anemometer were used for wind-resistance calculation and the wave resistance was calculated using the wave-height and direction-data from weather information. Also, measured water temperature was used to calculate the increase in resistance owing to the deviation in water density. As a result, the SPA analysis using measured data and weather information was proved to be valid and able to identify the ship's resistance propulsion performance. Even with little difference in the air-resistance coefficient value, both methods provide sufficient accuracy for speed-power analysis. The differences were unnoticeable when the speed-power analysis results using each method were compared. Also, speed-power analysis results of the 8,600 TEU container ship in two draft conditions show acceptable trends when compared with the model test results and are also able to show power increase owing to hull fouling and aging. Thus, results of speed-power analysis of the existing 8,600 TEU container ship using the SPA program appropriately exhibit the characteristics of speed-power performance in deal conditions.

Monitoring the Rate of Frozen Denaturation of Bovine Myosin by Competitive Indirect ELISA Method (Competitive Indirect ELISA를 이용한 Bovine Myosin의 동결 변성도 측정)

  • Kim, Seong-Bae;Lee, Ju-Woon;Park, Jong-Heum;Do, Hyung-Ki;Hyun, Chang-Kee;Shin, Heuyn-Kil
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.862-870
    • /
    • 1998
  • This study shows the application of Ci-ELISA method for monitoring the denaturation of myosin by the frozen treatment in order to differentiate thawed beef from chilled. Hanwoo M.Semitendinosus (n=25) was treated under the two different frozen process as follows; simple frozen treatment (Exp-1) at 4 different temperatures, -10, -20, -50 and $-80^{\circ}C$, respectively, and repeated thawing-refreezing treatment (Exp-2) stored at 4 different temperatures, -10, -20, -50 and $-80^{\circ}C$, respectively. Antibodies (Abs) were produced from rabbits immunized with myosin whole molecule (MWM) isolated from beef round, heavy meromyosin S-1 (S-1) and light meromyosin (LMM) prepared by digestion of MWM. Each immunoglobulin G (IgG) was separated from antiserum. At 6 month storage, IA of anti-MWM IgG for myosin was decreased to 32.67, 32. 23, 51.52 and 34.27% in Exp-1 and to 14.82, 15.61, 25.3 and 23.7% in Exp-2 at -10, -20, -50 and $-80^{\circ}C$, respectively (P<0.05). In Exp-1, the reactivities of anti-LMM IgG were decreased to 25.12, 21.42, 49.05 and 28.96%, and those of Exp-2 were to 11.88, 9.56, 20.63 and 12.64% at -10, -20, -50 and $-80^{\circ}C$, respectively, at 6 times thawing (P<0.05). Conclusively, myosin was denaturated by freezing treatment and LMM or myosin rod part might have suffered from more extreme demage than HMM S-1, and samples at $-50^{\circ}C$ were slightly injured less than others by freezing treatment.

  • PDF

A Study on Speech Recognition Using the HM-Net Topology Design Algorithm Based on Decision Tree State-clustering (결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘을 이용한 음성인식에 관한 연구)

  • 정현열;정호열;오세진;황철준;김범국
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.199-210
    • /
    • 2002
  • In this paper, we carried out the study on speech recognition using the KM-Net topology design algorithm based on decision tree state-clustering to improve the performance of acoustic models in speech recognition. The Korean has many allophonic and grammatical rules compared to other languages, so we investigate the allophonic variations, which defined the Korean phonetics, and construct the phoneme question set for phonetic decision tree. The basic idea of the HM-Net topology design algorithm is that it has the basic structure of SSS (Successive State Splitting) algorithm and split again the states of the context-dependent acoustic models pre-constructed. That is, it have generated. the phonetic decision tree using the phoneme question sets each the state of models, and have iteratively trained the state sequence of the context-dependent acoustic models using the PDT-SSS (Phonetic Decision Tree-based SSS) algorithm. To verify the effectiveness of the above algorithm we carried out the speech recognition experiments for 452 words of center for Korean language Engineering (KLE452) and 200 sentences of air flight reservation task (YNU200). Experimental results show that the recognition accuracy has progressively improved according to the number of states variations after perform the splitting of states in the phoneme, word and continuous speech recognition experiments respectively. Through the experiments, we have got the average 71.5%, 99.2% of the phoneme, word recognition accuracy when the state number is 2,000, respectively and the average 91.6% of the continuous speech recognition accuracy when the state number is 800. Also we haute carried out the word recognition experiments using the HTK (HMM Too1kit) which is performed the state tying, compared to share the parameters of the HM-Net topology design algorithm. In word recognition experiments, the HM-Net topology design algorithm has an average of 4.0% higher recognition accuracy than the context-dependent acoustic models generated by the HTK implying the effectiveness of it.