• Title, Summary, Keyword: HMM

Search Result 919, Processing Time 0.039 seconds

HMM-Based Bandwidth Extension Using Baum-Welch Re-Estimation Algorithm (Baum-Welch 학습법을 이용한 HMM 기반 대역폭 확장법)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.259-268
    • /
    • 2007
  • This paper contributes to an improvement of the statistical bandwidth extension(BWE) system based on Hidden Markov Model(HMM). First, the existing HMM training method for BWE, which is suggested originally by Jax, is analyzed in comparison with the general Baum-Welch training method. Next, based on this analysis, a new HMM-based BWE method is suggested which adopts the Baum-Welch re-estimation algorithm instead of the Jax's to train HMM model. Conclusionally speaking, the Baum-Welch re-estimation algorithm is a generalized form of the Jax's training method. It is flexible and adaptive in modeling the statistical characteristic of training data. Therefore, it generates a better model to the training data, which results in an enhanced BWE system. According to experimental results, the new method performs much better than the Jax's BWE systemin all cases. Under the given test conditions, the RMS log spectral distortion(LSD) scores were improved ranged from 0.31dB to 0.8dB, and 0.52dB in average.

Health State Clustering and Prediction Based on Bayesian HMM (Bayesian HMM 기반의 건강 상태 분류 및 예측)

  • Sin, Bong-Kee
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1026-1033
    • /
    • 2017
  • In this paper a Bayesian modeling and duration-based prediction method is proposed for health clinic time series data using the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). HDP-HMM is a Bayesian extension of HMM which can find the optimal number of health states, a number which is highly uncertain and even difficult to estimate under the context of health dynamics. Test results of HDP-HMM using simulated data and real health clinic data have shown interesting modeling behaviors and promising prediction performance over the span of up to five years. The future of health change is uncertain and its prediction is inherently difficult, but experimental results on health clinic data suggests that practical long-term prediction is possible and can be made useful if we present multiple hypotheses given dynamic contexts as defined by HMM states.

A Frequency Weighted HMM with Spectral Compensation for Noisy Speech Recognition (잡음하의 음성인식을 위한 스펙트럴 보상과 주파수 가중 HMM)

  • 이광석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.443-449
    • /
    • 2001
  • This paper is simulation research to improve speech recognition rates under the noisy environment. We examines recognition ratio based on frequency-weighted HMM together with spectral subtraction. As results, frequency-weighted HMM with scaling coefficients is trained as a minimum error classification criterion, and is presents a higher recognition rates in noisy condition than a conventional method. Furthermore, spectral subtraction method gives 11 to 28% improvements for this frequency-weighted HMM in low SNR, and gives recognition rates of 81.7% at 6dB SNR of noisy speech.

  • PDF

On Learning of HMM-Net Classifiers Using Hybrid Methods (하이브리드법에 의한 HMM-Net 분류기의 학습)

  • 김상운;신성효
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.1273-1276
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood (ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM-Net classifiers using hybrid criteria, ML/MMSE and MMI/MMSE, and report the results of an experimental study comparing the performance of HMM-Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

Information extraction wish S-HMM from textual data (5-HMM물 이용한 텍스트 정보추출)

  • 엄재홍;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.328-330
    • /
    • 2002
  • 본 논문에서는 패턴이나 음성데이터와 같이 순차적 데이터론 인식하는데 널리 사용되어온 모델로서, 일련의 순차적인 성질을 내포하고있는 데이터를 다루는 문제에 적합하다고 할 수 있는 HMM을 이용하여 정보추출 문제를 다룬다. 기본적으로는 통상적인 HMM 사용법을 따르나 모델의 구조를 정함에 있어서 HMM을 사용할 때는 주로 목적에 맞는 HMM의 구조를 수동으로 구성하고 모델 내부의 확률 파라미터 값을 학습시켰던 데 반해, 본 논문에서는 데이터의 전처리 정보를 이용하여 초기에 추상적으로 설정한 모델이 학습을 통해서 점차 구체화되어 가는 자기 구성 은닉마르코프 모델(5-HMM)을 제시하여 사용한다. 제시된 방법은 CFP(Call for Paper)등의 텍스트 데이터에 더만 실험에서 기존 방식을 사용한 HMM보다 향상된 결과를 보여준다.

  • PDF

A Study on Speaker-Independent Speech Recognition Using a Hybrid System of Semi-Continuous HMM and RBF (반연속 HMM과 RBF 혼합 시스템을 이용한 화자독립 음성인식에 관한 연구)

  • Moon Yun Joo;June Sun Do;Kang Chul Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.36-39
    • /
    • 1999
  • 본 논문에서는 기존의 반연속 HMM과 신경망 알고리즘인 RBF(Radial Basis Function)를 혼합한 형태를 음성인식에 적용한다. 기존의 반연속 HMM은 학습 과정에서 모든 모델과 상태에서 공유되는 L개의 가우시안 확률 밀도들과 각가우시안 확률 밀도들의 가중치를 결정하는 흔합 밀도계수 의해 입력 음성의 특징을 확률적으로 모델링하는 혼합 확률을 얻고 또 Maximum likelihood와 Baum-Welch 알고리즘을 이용해 초기확률, 전이확률, 관측확률, 평균벡터 $\mu$, 공분산 행렬 $\Sigma$을 학습해 나간다. 그러나 제안한 RBF/반연속 HMM 혼합형태는 RBF의 변형된 방식을 첨가해 반연속 HMM 관측 파라미터를 RBF에 의해 결정함으로써 보단 분별릭 있는 화자독립 인식 시스템이 된다. 그래서 인식 실험결과 인식률에 있어서 기존의 반연속 HMM보다 향상된 인식률을 얻는다.

  • PDF

Verification of Graphemes Using Neural Networks in HMM Based On-line Koran Handwriting Recognition (인공신경망을 이용한 HMM 기반 온라인 한글인식 시스템의 자모 검증)

  • Cho, Sung-Jung;Kim, Ja-Hwan;Kim, Jin-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.890-895
    • /
    • 2000
  • 본 논문에서는 인공신경망을 이용한 자모 검증을 HMM 기반 온라인 한글인식 시스템에 적용하는 방법론을 제시한다. 본 시스템에서 각각의 자모는 한 개의 HMM 모델과 한 개의 인공신경망 검증기를 갖는다. 자모 검증기는 HMM 네트웍이 생성한 자모 후보 가정을 입력으로 받은 후, 이 가정의 타당성에 대한 사후 확률을 출력한다. 이 사후 확률은 Viterbi 탐색시 탐색 경로에 반영된다. 기존 HMM 시스템의 국소적 특징의 한계를 보완하기 위하여, 한글 자모의 기본획 분석에서 얻어진 구조적, 전역적 특징이 자모 검증기에 사용되었다. 한글 낱자인식에 대한 실험 결과 HMM 기반 인식기에 자모 검증기를 도입함으로서 38.5%의 인식 오류를 줄일 수 있었다.

  • PDF

An efficient learning method of HMM-Net classifiers (HMM-Net 분류기의 효율적인 학습법)

  • 김상운;김탁령
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.933-935
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood(ML) and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM_Net classifiers using a ML-MMSE hybrid criterion and report the results of an experimental study comparing the performance of HMM_Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the repects of learning and recognition rates.

  • PDF

Korean Word Recognition Using Semi-continuous Hidden Markov Models (준영속분포 HMM을 이용한 한국어 단어 인식)

  • 조병서;이기영;최갑석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.46-52
    • /
    • 1992
  • 본 논문에서는 HMM 의 이산분포를 연속분포로 근사시키는 준 연속분포 HMM 에 의한 한국어 단어인식에 관하여 연구하였다. 이 모델의 생성과정에서는 입력벡터의 출력확률을 혼합 다차원 정규분 포로 가정하여 입력벡터의 확률함수와 코드위드의 심볼출력을 선형결합하므로써, 연속분포 모델로 근사 시켰으며, 단어인식과정에서는 생성모델에 의해 이산분포 모델에서 발생되는 양자와 왜곡을 감소시키므 로써 인식률을 향상시켰다. 이 방법을 평가하기 위하여 DDD 지역명을 대상으로 이산분포 HMM과 준연 속분포 HMM 의 비교실험을 수행하였다. 그 결과 준연속분포 HMM 에 의하여 이산분포 HMM 보다 향상된 인식률을 얻을 수 있었다.

  • PDF

Speech Recognition Using HMM Based on Fuzzy (피지에 기초를 둔 HMM을 이용한 음성 인식)

  • 안태옥;김순협
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.68-74
    • /
    • 1991
  • This paper proposes a HMM model based on fuzzy, as a method on the speech recognition of speaker-independent. In this recognition method, multi-observation sequences which give proper probabilities by fuzzy rule according to order of short distance from VQ codebook are obtained. Thereafter, the HMM model using this multi-observation sequences is generated, and in case of recognition, a word that has the most highest probability is selected as a recognized word. The vocabularies for recognition experiment are 146 DDD are names, and the feature parameter is 10S0thT LPC cepstrum coefficients. Besides the speech recognition experiments of proposed model, for comparison with it, we perform the experiments by DP, MSVQ and general HMM under same condition and data. Through the experiment results, it is proved that HMM model using fuzzy proposed in this paper is superior to DP method, MSVQ and general HMM model in recognition rate and computational time.

  • PDF