• Title/Summary/Keyword: HMG-CoA

Search Result 251, Processing Time 0.041 seconds

Chemical Components and Physiological Functionalities of Brassica campestris ssp rapa Sprouts (순무 싹의 화학성분과 생리기능성)

  • Ha, Jin-Ok;Ha, Tae-Man;Lee, Jae-Joon;Kim, Ah-Ra;Lee, Myung-Yul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1302-1309
    • /
    • 2009
  • This study was carried out to investigate physicochemical and functional properties of dried Brassica campestris ssp rapa (BR) sprouts. The proximate compositions of BR sprouts as dry matter basis were 2.35% of moisture content, 22.51% of crude protein, 21.60% of crude lipid, 4.35% of crude ash, and 49.19% of carbohydrate, respectively. The free sugars were identified as glucose and fructose. Analyzing total amino acids, 18 kinds of components were isolated from BR sprouts. The essential amino acid contained in BR sprouts accounted for 47.00% of total amino acid, while the non-essential amino acid accounted for 53.00%. The contents of vitamin A and vitamin E were 0.09 mg% and 3.06 mg%, respectively. Tartaric acid was the major organic acid. Among the minerals in dried BR sprouts, the content of potassium was the highest (882.50 mg%) and those of magnesium and calcium were comparatively high (342.85 mg%, 274.30 mg%). BR sprouts ethanol extract significantly inhibited the HMG-CoA reductase activity in a concentration-dependent manner in vitro. Furthermore, nitrite scavenging ability and DPPH radical scavenging activity of the ethanol extract of BR sprouts were 64.25% and 69.29% at a concentration of 1,000 ${\mu}g$/mL, respectively. These results suggest that BR sprouts possess potential antioxidative capacity and HMG-CoA reductase inhibitory activity.

Effects of Ethylacetate Fraction of Plantago asiatica L. on Hypercholesterolemia Induced by High Cholesterol Diet in Rats (질경이(Plantago asiatica L.) 에틸아세테이트분획이 흰쥐의 고콜레스테롤혈증에 미치는 효과)

  • Lee Jae-Joon;Lee Jeong-Hwa;Jeong Chang-Ju;Choi Hyun-Sook;Lee Myung-Yul
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.624-630
    • /
    • 2005
  • Plantain was extracted with ethanol and fractionated systemically with n-hexane, chloroform, ethylacetate, n-butanol and water to study inhibitory effect on cholesterol synthesis in vitro. To screen the effect, inhibitory activities on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase obtained from Saccharomyces cerevisiae were examined using the five fractions of Plantain. The HMG-CoA reductase activity was inhibited most by ehylacetate fraction among the fractions, although the all five fractions had the effect To see the hypocholesterolemic effect of the ethylacetate fraction of Plantanin (PAE) in vivo, male Sprague-Dawley rats were received 5 types of diets for 6 weeks: normal diet group (NOR), high cholesterol diet group($1\%$ cholesterol and $0.25\%$ sodium cholate, CON), normal diet and PAE 70 mg/kg administered group(S1), high cholesterol diet and PAE 140 mg/kg administrated group(S2), and high cholesterol diet and PAE 140 mg/kg administered group(S3). Body weight gains of the CON were significantly increased compared to those of S1, S2 and S3. Activities of serum AST and ALT were tended to be increased in CON compared with NOR and reduced by the PAE administration. Concentrations of serum total cholesterol, free cholesterol, LDL-cholesterol, triglyceride and the atherogenic index were tended to be decreased in the PAE administered groups compared with the CON. HDL-cholesterol and phospholipid concentrations were significantly decreased in the CON and markedly increased by the PAE administered groups. Taten together, it is suggested that the ethylacetate fraction of Plantanin exerts antiatherosclerotic effect by reducing serum cholesterol concentrations in rats fed high cholesterol diets.

Evaluation of Potential Drug-Drug Interactions in Patients Taking HMG CoA-reductase Inhibitors (HMG CoA-reductase inhibitors를 복용하는 환자의 잠재적 약물상호작용 연구)

  • Lee, Kyeong Ju;Kim, Kyung Rim;Seong, Jae Min;Ryu, Seung Wan;Lee, Hyun Yoon;Cho, Sekyoung;Cheong, Yeji;Nam, Ki Nam;Lee, Yu Jeung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.30 no.1
    • /
    • pp.31-35
    • /
    • 2020
  • Objective: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are frequently prescribed medications worldwide for the treatment of hypercholesterolemia. Statins are considered to be well tolerated; however, they have a potential for myotoxicity. Concomitant drugs that inhibit cytochrome P450 3A4 can increase the concentration of statins and thus the risk of developing myotoxicity. The purpose of this study was to evaluate risk factors associated with potential drug-drug interactions in patients receiving statins. Methods: The subjects of this study were patients aged more than 18 years who received at least one prescription of statins in a general hospital located in Chuncheon-si, Korea, between January 1, 2018, and March 31, 2018. Data regarding statin use and baseline characteristics was collected from the computerized hospital database. Logistic regression analysis was used to identify risk factors associated with potential drug-drug interactions. Results: A total of 1061 patients were finally included in the study. The incidence of potential drug-drug interactions was 45% in all subjects. According to the results of the multivariate logistic regression analysis, myocardial infarction as the indication of statin, arrhythmia or heart failure as a comorbidity, and aspartate aminotransferase levels higher than 40 IU/L were significant risk factors for potential drug-drug interactions in study subjects. Diltiazem was the most commonly co-prescribed drug that caused potential drug-drug interactions with statins. Conclusion: There was a considerable rate of potential drug-drug interactions in patients receiving statins. Health care professionals should attempt to reduce potential drug-drug interactions during statin administration.

Study on the hypochlolesterolemic and antioxidative effects of tyramine derivatives from the root bark of Lycium chenese Miller

  • Cho, Sung-Hee;Park, Eun-Jung;Kim, Eun-Ok;Choi, Sang-Won
    • Nutrition Research and Practice
    • /
    • v.5 no.5
    • /
    • pp.412-420
    • /
    • 2011
  • The aim of the present study was to investigate the hypocholesterolemic effect and potential of tyramine derivatives from Lycii Cortex Radicis (LCR), the root bark of lycium (Lycium chenese Miller) in reducing lipid peroxidation. The activities of enzymes, hepatic 3-hydroxy 3-methylglutaryl (HMG) CoA reductase and acyl-CoA:cholesterol acyltransferase (ACAT) and LDL oxidation were measured in vitro and animal experiments were also performed by feeding LCR extracts to rats. The test compounds employed for in vitro study were trans-N-p-coumaroyltyramine (CT) and trans-N-feruloyltyramine (FT), LCR components, N-(p-coumaroyl)serotonin (CS) and N-feruloylserotonin (FS) from safflower seeds, ferulic acid (FA) and 10-gingerol. It was observed that FT and FS at the concentration of 1.2 mg/mL inhibited liver microsomal HMG CoA reductase activity by ~40%, but no inhibition of activity was seen in the cases of CT, CS, FA and 10-gingerol. Whereas, ACAT activity was inhibited ~50% by FT and CT, 34-43% by FS and CS and ~80% by 10-gingerol at the concentration of 1 mg/mL. A significant delay in LDL oxidation was induced by CT, FT, and 10-gingerol. For the animal experiment, five groups of Sprague-Dawley male rats were fed high fat diets containing no test material (HF-control), 1 and 2% of LCR ethanol extract (LCR1 and LCR2), and 1% of extracts from safflower seed (Sat) and ginger (Gin). The results indicated that total cholesterol level was significantly lower in Saf, LCR2 and Gin groups, and HDL cholesterol level was lower only in Gin group when compared with HF-control group; while there was no difference in the serum triglyceride levels among the five experimental groups. The level of liver cholesterol was significantly lower in LCR1 and LCR2 groups than HF-control Serum levels of TBARS were significantly lower only in LCR2 group when compared with HF-control group. From the observed results, we concluded that LCR can be utilized as a hypocholesterolemic ingredient in combination with ginger, especially for functional foods.

Cholesterol Improvement Synergistic Effects of Fermented Soybean Grits Caused by Added with Mung Bean in vitro (녹두 첨가로 인한 탈지대두 Grits(Defatted Soybean Grits) 발효물의 in vitro 상에서의 콜레스테롤 개선능 상승효과)

  • Lee, Sung-Gyu;Kim, Hyun-Jeong;Yu, Mi-Hee;Lee, Eun-Ju;Lee, Sam-Pin;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.947-952
    • /
    • 2010
  • This study was performed to investigate cholesterol improvement of fermented defatted soybean grits (FD) and FD added with 2.5, 5, 10% mung bean (FDM). The FD and FDM were prepared by the solid state fermentation using Bacillus subtilis NUC1 at $40^{\circ}C$ for 24 hr. More than 70% cholesterol adsorption of FD and FDM groups was shown. Particularly, FDM added with 2.5% mung bean (2.5% FDM) showed highest cholesterol adsorption by 90% among FD and FDM groups. 2.5% FDM showed 42% inhibition effect on HMG-CoA reductase, and significantly decreased the intracellular cholesterol contents in HepG2 cells. Apolipoprotein AI, CIII improvement effects of FD and FDM group in HepG2 cells showed most effects in the 2.5% FDM. The results suggest that FDM added with 2.5% mung bean may be beneficial to the prevention of hypercholesterol.

Compatibility Study of Excipients for Pravastatin Tablet (Pravastatin 정제 연구를 위한 첨가제와의 적합성 연구)

  • Kim, Kang Min
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.472-477
    • /
    • 2018
  • Pravastatin sodium is a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor used in the treatment of hypercholesterolemia by reducing cholesterol biosynthesis. Pharmaceutical excipients of commonly used including water, diluents, stabilizers, disintegrants, lubricants and colorants, and were identified for compatibility. All tests were performed by means of physical mixture of pravastatin and the excipients, which were placed in a press-through-pack (PTP) and incubated under accelerated conditions ($40^{\circ}C$ and 75% relative humidity) for 3 months. The blends of pravastatin with all excipients developed white, off white, and light brown powders, which showed no changes upon visual analysis. Accelerated conditions changed the degradation profile of pravastatin calcium in the HPLC system when mixed with different excipients. Although most excipients can have minor effects on pravastatin stability, the major degradation product from pravastatin was lactone. Low-level interaction (assay and impurity) was induced by all excipients except for microcrystalline cellulose and croscarmellose sodium. These excipients increased lactone impurity in 3 months by as much as 0.22% and 0.18% respectively. The total mixture slightly increased the lactone impurity (by 0.43% in 3 months) of pravastatin. There was no change in the assays of all excipients. These results will be helpful in studying tablet size reductions for convenience of use.

The Effect of Dietary Calcium and Magnesium on the 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (3-Hydroxy-3-methylglutaryl Coenzyme A reductase 활성에 미치는 마그네슘과 칼슘의 영향)

  • Chung, Young Tae;Nam, Hyun Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.3
    • /
    • pp.212-218
    • /
    • 1983
  • The effect of dietary calcium and magnesium on the 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase (E.C. 1.1.1.34) in rabbit's liver microsomal protein was studied for a period of 4 weeks using isocalories and isonitro-genous as a basal diet. The experimental rabbits fed the following basal diets, such as crude protein 68.45%, carbohydrates 13.38%, fats 16.17% and added some sorts of calcium and magnesium, according to experimental plan making. The subject rabbits were divided into 9 feeding groups. The results are summarized as follows. Body weight gains per week of the groups fed magnesium and basal diet showed a little bit increase, but the groups fed calcium and basal diet showed a little bit decrease compare with control group. In case of serum magnesium, control group was 9.5mg% groups fed basal diet and magnesium were 8.27mg% in average, groups fed basal diet and calcium were 4.45mg% in average. In case of serum calcium, control group was 15.3mg%, groups fed basal diet and magnesium were 14.6mg% in average, groups fed basal diet and calcium were 14.1mg% in average. There was no great difference between magnesium fed groups in serum calcium. In serum triglyceride, control group was 82.8mg%, groups fed magnesium and basal diet were 60.3mg% in average, groups fed calcium and basal diet were 69.5mg% in average. The calcium fed groups were higher than the magnesium fed groups in serum triglyceride. In serum cholesterol, control group was 80mg%, groups fed magnesium and basal diet were 64.3mg% in average, groups fed calcium and basal diet were 56.3mg% in average. The calcium fed groups were lower than the magnesium fed groups in serum cholesterol. In case of the 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity, control group was 0.998nmol/min/mg protein, groups fed magnesium and basal diet of HMG-CoA were 0.849nmol/min/mg in average.

  • PDF

Effects of Opuntia ficus-indica on Lipid Metabolism in the db/db Mouse (노팔 복합물이 II형 당뇨생쥐에서 지질대사에 미치는 효과)

  • Yoon, Jin A
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.861-868
    • /
    • 2013
  • This study investigated the effects of Opuntia ficus-indica and other natural resources (OF) in db/db and C57 mice. Plasma triglycerides, cholesterol, alanine aminotransferase (ALT) activity, aspartate aminotransferase (AST) activity, fecal bile acid excretion, the histopathological appearance of the liver, and cholesterol-related mRNA expression were determined. Mice (12 db/db mice and 12 C57 mice) were assigned to diabetic-control (db-C), diabetic-OF treatment (db-OF), normal-control (C57-C), and normal-OF treatment (C57-OF) groups. Animals in the control group were fed an AIN-76 recommended diet and animals in the OF group were fed an experimental diet containing 5% of OF for 4 weeks. Concentrations of total plasma cholesterol, triglyceride, low density lipoprotein (LDL)-cholesterol, and very low density lipoprotein (VLDL)-cholesterol decreased with the administration of OF. In contrast, high density lipoprotein (HDL)-cholesterol levels were minimally affected by the experimental diet. Plasma AST and ALT showed lower activities in the db-OF group, and the fecal excretion of bile acid was reduced in the db-OF group. Histopathological analysis of the liver showed that fatty liver conditions in the db-OF group were more improved than db-C. Low-density lipoprotein receptor (LDL-R) and cholesterol 7${\alpha}$-hydroxylase (CYP7A1) mRNA expression were increased in the db-OF group as well. However, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA-R) mRNA expression was lower in the db-OF group. These results provide experimental evidence about improved lipid metabolism of the OF feeding in the db/db mice.

Phenylpropanoids from Myristica fragrans Houtt (육두구(Myristica fragrans Houtt)로부터 Phenylpropanoid의 분리)

  • Song, Myoung-Chong;Ahn, Eun-Mi;Bang, Myun-Ho;Kim, Se-Young;Rho, Yeong-Deok;Kwon, Byuong-Mog;Lee, Hyun-Sun;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.366-369
    • /
    • 2004
  • Myristica fragrans Houtt were extracted in 80% aq. MeOH and solvent fractionated sing $CHCl_3$, EtOAc, n-BuOH and water, successively. The n-BuOH fraction gave three phenylpropanoids through application of silica gel column chromatographies. The chemical structures of the phenylpropanoids were determined by the interpretation of several spectral data, including NMR and MS as meso-dihydroguaiaretic acid (1), nectandrin B (2) and syringin methyl ether (3). Compound 1, which was first isolated from this plant by authors, showed inhibitory activities with $60.0{\pm}2.1%\;(100\;{\mu}g/ml),\;42.6{\pm}0.9%\;(140\;{\mu}g/ml)\;and\;12.2{\pm}0.2%\;(200\;{\mu}g/ml)$ on ACAT(acyl-CoA:Cholesterol Acyltransferase), chitin synthase III and HMG-CoA reductase (3-hydroxy-3-methylglutaryl coenzyme A reductase), respectively. Compound 3 showed inhibitory activities with $27.2{\pm}0.9%\;(100\;{\mu}g/ml),\;45.5{\pm}0.8%\;(200\;{\mu}g/ml)$ on ACAT and chitin synthase III.

Extracts of Housefly Maggot Reduces Blood Cholesterol in Hypercholesterolemic Rats (고콜레스테롤 랫드에서 파리유충 추출물의 혈액지질 감소기전)

  • Park, Byung-Sung;Park, Sang-Oh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.101-112
    • /
    • 2014
  • The aim of this study was to evaluate the biological mechanism of orally administered ethanolic extract of fly maggot(EM) on hypocholesterolemic rats fed a high-cholesterol diet. Sprague Dawley male rats were divided into four groups (EM dose control=0, 5.0, 7.0, and 9.0 mg/100 g BW) and were treated for 6 weeks. EM groups revealed a significant reduction in serum triglyceride, total cholesterol, and LDL-C when compared with the control group(p<0.05). HMG-CoA reductase activity in EM groups were lower than those of the control group, but total sterol, neutral sterol, and bile acid excretion were increased in EM groups when compared with the control group(p<0.05). To identify the biological mechanism of EM towards the hypocholesterolemic effect, sterol response element binding proteins (SREBPs) and the peroxisome proliferator-activated receptors ($PPAR{\alpha}$ transcription system were determined in rats fed a high-cholesterol diet. It was discovered that EM suppress the expression of SREBP-$1{\alpha}$ and SREBP-2 mRNA in the liver tissues of high-cholesterol diet fed rats, while simultaneously increasing the expression of $PPAR{\alpha}$ mRNA(p<0.05). This finding indicates that EM may have hypocholesterolemic effects in rats fed a high-cholesterol diet, by regulating cholesterol metabolism-related biochemical parameters and SREBP-$1{\alpha}$ SREPB-2 and $PPAR{\alpha}$gene expression.