• 제목/요약/키워드: HLW disposal system

Search Result 55, Processing Time 0.03 seconds

Mechanical behavior of an underground research facility in Korea Atomic Energy Research Institute

  • Kwon S.K.;Cho W.J.;Hahn P.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.245-252
    • /
    • 2005
  • An underground research facility (KURF) is under construction at KAERI for the in situ studies related to the validation of a HLW disposal system. For the safe construction and long-term researches at KURF, mechanical stability of the facility should be evaluated. In this study, 3D mechanical stability analysis using the rock mass properties determined from various in situ as well as laboratory tests was carried out. From the analysis, it was possible to predict the rock deformation, stress concentration, and plastic zone developed before and after the excavation. A test blasting was performed to characterize the site dependent dynamic response, which can be used for the prediction of the blasting impact on the facilities in KAERI.

  • PDF

Evaluation of Water Suction for the Compacted Bentonite Buffer Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 수분흡입력 평가)

  • Yoon, Seok;Go, Gyu-Hyun;Lee, Jae-Owan;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.7-14
    • /
    • 2019
  • The compacted bentonite buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW), and it is considered the best candidate for the buffer material. The buffer is located between disposal canisters and near-field rock mass, and it interrupts the release of radionuclide from disposal canisters and protect them from the penetration of groundwater. At initial disposal condition, degree of saturation of the compacted bentonite buffer decreases because of high thermal quantities released from the disposal canisters. However, the degree of saturation of the compacted bentonite buffer gradually increases caused by inflow of groundwater. The saturated and unsaturated behavior of the buffer is a very important input data since it can determine the safety performance of EBS. Therefore, this paper investigated water retention capacity (WRC) for the Korean compacted bentonite buffer. The WRC of the compacted bentonite buffer was derived by measuring volumetric water content and water suction when temperature variation was between 24℃~125℃ considering decrease of degree of saturation with respect to temperature increase. The WRC was also derived with the same volumetric water content under the room temperature condition, and it showed 1~15% larger water suction than high temperature condition.

Evaluation of Soil-Water Characteristic Curve for Domestic Bentonite Buffer (국내 벤토나이트 완충재의 함수특성곡선 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Lee, Changsoo;Cho, Won-Jin;Lee, Seung-Rae;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • High-level radioactive waste (HLW) such as spent fuel is inevitably produced when nuclear power plants are operated. A geological repository has been considered as one of the most adequate options for the disposal of HLW, and it will be constructed in host rock at a depth of 500~1,000 meters below ground level with the concept of an engineered barrier system (EBS) and a natural barrier system. The compacted bentonite buffer is one of the most important components of the EBS. As the compacted bentonite buffer is located between disposal canisters with spent fuel and the host rock, it can restrain the release of radionuclides and protect canisters from the inflow of groundwater. Because of inflow of groundwater into the compacted bentonite buffer, it is essential to investigate soil-water characteristic curves (SWCC) of the compacted bentonite buffer in order to evaluate the entire safety performance of the EBS. Therefore, this paper conducted laboratory experiments to analyze the SWCC for a Korean Ca-type compacted bentonite buffer considering dry density, confined or unconfined condition, and drying or wetting path. There was no significant difference of SWCC considering dry density under unconfined condition. Furthermore, it was found that there was higher water suction in unconfined condition that in confined condition, and higher water suction during drying path than during wetting path.

Increasing of Thermal Conductivity from Mixing of Additive on a Domestic Compacted Bentonite Buffer (국산 압축벤토나이트 완충재의 첨가제 혼합을 통한 열전도도 향상)

  • Lee, Jong-Pyo;Choi, Heui-Joo;Choi, Jong-Won;Lee, Minsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2013
  • The Geyoungju Ca-bentonite with dry density of 1.6 g/$cm^3$ has been considered as a standard buffer material for the disposal of high level waste in KAERI disposal system design. But it had relatively lower thermal conductivity compared with other surrounding materials, that was one of key parameters to limit the increase of the disposal density in the disposal system. In this study, various additives were selected and mixed with the Ca-bentonite in different mixing methods in order to increase the thermal conductivity from 0.8 W/mK to 1.0 W/mK. As an additive, CNT (Cabon Nano Tube), graphite, alumina, CuO, and $Fe_2O_3$ were selected, which are chemically stable and have good thermal conductivity. As mixing methods, dry hand-mixer mixing, wet milling and dry ball mill mixing were applied for the mixing. Above all, the ball mill mixing was proved to be most effective since the produced mixture was most homogeneous and showed higher increase in the thermal conductivity. From this study, it was confirmed that the thermal conductivity for the Geyoungju Ca-bentonite could be improved by adding small amount of highly thermal conductive material to 1.0 W/mk. In conclusion, it was believed that the experimental results will be valuable in the disposal system design if the additive effects on the swelling and permeability on the compact bentonite are also approved in further studies.

Rock Mechanics Studies at the KAERI Underground Research Tunnel for High-Level Radioactive Waste Disposal (고준위폐기물 처분연구를 위한 지하처분연구시설에서의 암석역학 관련 연구)

  • Kwon, S.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.43-55
    • /
    • 2007
  • An underground research tunnel, KURT, was constructed at Korea Atomic Energy Research Institute, for various in situ validation experiments related to the development of a high-level radioactive waste disposal system. KURT, which has length of 255 m (access tunnel 180 m and research modules 75 m) and size of $6m{\times}6m$ was excavated in a cryatalline rock mass. In the KURT project, different rock mechanics studies had been carried out during the concept design, site characterization, detailed design, and construction stages. From the geophysical survey, borehole investigation, and rock property tests in laboratory and in situ, the rock and rock mass properties required for the mechanicsl stability analysis of KURT could be achieved and used for the input parameters of computer simulations. In this paper, important results from the rock mechanics studies at KURT and the three-dimensional mechanical stability analysis will be introduced.

Glass Dissolution Rates From MCC-1 and Flow-Through Tests

  • Jeong, Seung-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.257-258
    • /
    • 2004
  • The dose from radionuclides released from high-level radioactive waste (HLW) glasses as they corrode must be taken into account when assessing the performance of a disposal system. In the performance assessment (PA) calculations conducted for the proposed Yucca Mountain, Nevada, disposal system, the release of radionuclides is conservatively assumed to occur at the same rate the glass matrix dissolves. A simple model was developed to calculate the glass dissolution rate of HLW glasses in these PA calculations [1]. For the PA calculations that were conducted for Site Recommendation, it was necessary to identify ranges of parameter values that bounded the dissolution rates of the wide range of HLW glass compositions that will be disposed. The values and ranges of the model parameters for the pH and temperature dependencies were extracted from the results of SPFT, static leach tests, and Soxhlet tests available in the literature. Static leach tests were conducted with a range of glass compositions to measure values for the glass composition parameter. The glass dissolution rate depends on temperature, pH, and the compositions of the glass and solution, The dissolution rate is calculated using Eq. 1: $rate{\;}={\;}k_{o}10^{(ph){\eta})}{\cdot}e^{(-Ea/RT)}{\cdot}(1-Q/K){\;}+{\;}k_{long}$ where $k_{0},\;{\eta}$ and Eaare the parameters for glass composition, pH, $\eta$ and temperature dependence, respectively, and R is the gas constant. The term (1-Q/K) is the affinity term, where Q is the ion activity product of the solution and K is the pseudo-equilibrium constant for the glass. Values of the parameters $k_{0},\;{\eta}\;and\;E_{a}$ are the parameters for glass composition, pH, and temperature dependence, respectively, and R is the gas constant. The term (1-Q/C) is the affinity term, where Q is the ion activity product of the solution and K is the pseudo-equilibrium constant for the glass. Values of the parameters $k_0$, and Ea are determined under test conditions where the value of Q is maintained near zero, so that the value of the affinity term remains near 1. The dissolution rate under conditions in which the value of the affinity term is near 1 is referred to as the forward rate. This is the highest dissolution rate that can occur at a particular pH and temperature. The value of the parameter K is determined from experiments in which the value of the ion activity product approaches the value of K. This results in a decrease in the value of the affinity term and the dissolution rate. The highly dilute solutions required to measure the forward rate and extract values for $k_0$, $\eta$, and Ea can be maintained by conducting dynamic tests in which the test solution is removed from the reaction cell and replaced with fresh solution. In the single-pass flow-through (PFT) test method, this is done by continuously pumping the test solution through the reaction cell. Alternatively, static tests can be conducted with sufficient solution volume that the solution concentrations of dissolved glass components do not increase significantly during the test. Both the SPFT and static tests can ve conducted for a wide range of pH values and temperatures. Both static and SPFt tests have short-comings. the SPFT test requires analysis of several solutions (typically 6-10) at each of several flow rates to determine the glass dissolution rate at each pH and temperature. As will be shown, the rate measured in an SPFt test depends on the solution flow rate. The solutions in static tests will eventually become concentrated enough to affect the dissolution rate. In both the SPFt and static test methods. a compromise is required between the need to minimize the effects of dissolved components on the dissolution rate and the need to attain solution concentrations that are high enough to analyze. In the paper, we compare the results of static leach tests and SPFT tests conducted with simple 5-component glass to confirm the equivalence of SPFT tests and static tests conducted with pH buffer solutions. Tests were conducted over the range pH values that are most relevant for waste glass disssolution in a disposal system. The glass and temperature used in the tests were selected to allow direct comparison with SPFT tests conducted previously. The ability to measure parameter values with more than one test method and an understanding of how the rate measured in each test is affected by various test parameters provides added confidence to the measured values. The dissolution rate of a simple 5-component glass was measured at pH values of 6.2, 8.3, and 9.6 and $70^{\circ}C$ using static tests and single-pass flow-through (SPFT) tests. Similar rates were measured with the two methods. However, the measured rates are about 10X higher than the rates measured previously for a glass having the same composition using an SPFT test method. Differences are attributed to effects of the solution flow rate on the glass dissolution reate and how the specific surface area of crushed glass is estimated. This comparison indicates the need to standardize the SPFT test procedure.

  • PDF

Temperature Effect on the Swelling Pressure of a Domestic Compacted Bentonite Buffer (국산 압축벤토나이트 완충재의 온도에 따른 팽윤압 특성 연구)

  • Lee, Ji-Hyeon;Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 2010
  • The effect of temperature on swelling pressure was observed with a Korean domestic Ca-bentonite which has been considered as a potential buffer material in the engineering barrier of a high level radioactive waste (HLW) disposal system. The Ca-bentonite was compacted to a dry density of 1.6 g/$cm^3$, and then de-ionized water was supplied into it with a constant pressure of 0.69 MPa. The equilibrium swelling pressures were measured with different temperatures of $25^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$, respectively. The Ca-bentonite showed a sufficiently high swelling pressure of 5.3 MPa at room temperatures. Then it was clearly showed that the equilibrium swelling pressure was decreased with an increase of temperature. Interestingly, there were some differences in temperature effect on the equilibrium swelling pressure when the environmental temperature is increasing or decreasing. For further clarifying the swelling behaviour of a Korea domestic Ca-bentonite, the change of a compaction level, and the composition variation of a supplied water would be needed to use in conceptual design of HLW disposal system.

Influence of EDZ on the Safety of a Potential HLW Repository

  • Hwang Yong-Soo;Kang Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.253-262
    • /
    • 2004
  • Construction of tunnels in a deep crystalline host rock for a potential High-Level Radioactive Waste(HLW) repository inevitably generates an excavation disturbed zone (EDZ). There have been a series of debates on whether a permeability in an EDZ increases or not and what would be the maximum depth of an EDZ. Recent studies show mixed opinions on permeability. However, there has been an international consensus on the thickness of an EDZ; 30 cm for TBM and 1 meter for controlled blast. One of the impacts of an EDZ is on determining the distance between adjacent deposition holes. The void gap by the excavation hinders relaxation of temperature profiles so that the current Korean reference designing distance between holes should be stretched out more to keep the maximum temperature in a buffer region below 100 degrees Celsius. The other impact of an EDZ is on the long-term post closure radiological safety. To estimate the impact, the reference scenario, the well scenario, is chosen. Released nuclides diffuse through a bentonite buffer region experiencing strong sorption and reach a fracture surrounded by a porous medium. Inside a fractured porous region, radionuclides migrate by advection and dispersion with matrix diffusion into a porous medium. Finally, they reach a well assumed to be a source of potable water for local residents. The annual individual dose is assessed on this well scenario to find out the significance of an EDZ. A profound sensitivity study was performed, but all results show that the impact is negligible. Even though the role of an EDZ turns out to be limited on overall safety assessment, still it is worthwhile to study the chemical role of an EDZ, such as a potential source for natural colloids, potential sealing of an open fracture by fine clay particles generated by the process of an EDZ, and alteration of a sorption mechanism by an EDZ in the future.

  • PDF

Analysis on Design Change for Backfilling Solution of the Disposal Tunnel in the Deep Geological Repository for High-Level Radioactive Waste in Finland (핀란드 고준위방사성폐기물 심층처분시설 처분터널 뒤채움 설계 변경을 위한 연구사례 분석)

  • Heekwon Ku;Sukhoon Kim;Jeong-Hwan Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.435-444
    • /
    • 2023
  • In the licensing application for the deep geological disposal system of high-level radioactive waste in Finland, the disposal tunnel backfilling has been changed from the block/pellet (for the construction) to the granular type (for the operation). Accordingly, for establishing the design concept for backfilling, it is necessary to examine applicability to the domestic facility through analyzing problems of the existing method and improvements in the alternative design. In this paper, we first reviewed the principal studies conducted for changing the backfill method in the licensing process of the Finnish facility, and identified the expected problems in applying the block/pellet backfill method. In addition, we derived the evaluation factors to be considered in terms of technical and operational aspects for the backfilling solution, and then conducted a comparative analysis for two types of backfill methods. This analysis confirmed the overall superiority of the design change. It is expected that these results could be utilized as the technical basis for deriving the optimum design plan in development process of the Korean-specific deep disposal facility. However, applicability should be reviewed in advance based on the latest technical data for the detailed evaluation factors that must be considered for selecting the backfilling method.

Development of a Signal Conditioner to Improve the Measurement Reliability of a Microseismic Monitoring System (미소진동 모니터링 시스템의 측정 신뢰도 향상을 위한 시그널 컨디셔너 개발)

  • Cheon, Dae-Sung;Han, Cheol-Min;Lee, Jang Baek
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Microseismic monitoring is utilized for the performance verification and safety management of the structure by detecting fine levels of damage. In order to construct a highly reliable microseismic monitoring system, the role of signal conditioner is critical. The signal conditioner helps with accurate data collection and precision control of the device, and performs additional functions such as signal conversion, linearization, and amplification. In this technical report, noise reduction signal conditioner suitable for mining sites was developed and reviewed for the purpose of implementing more precise monitoring by supplementing the previously developed microseismic monitoring system.