• Title/Summary/Keyword: HLT applications

Search Result 2, Processing Time 0.019 seconds

Component Analysis for Constructing an Emotion Ontology (감정 온톨로지의 구축을 위한 구성요소 분석)

  • Yoon, Aesun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.19-24
    • /
    • 2009
  • 의사소통에서 대화자 간 감정의 이해는 메시지의 내용만큼이나 중요하다. 비언어적 요소에 의해 감정에 관한 더 많은 정보가 전달되고 있기는 하지만, 텍스트에도 화자의 감정을 나타내는 언어적 표지가 다양하고 풍부하게 녹아 들어 있다. 본 연구의 목적은 인간언어공학에 활용할 수 있는 감정 온톨로지를 설계하는 데 있다. 텍스트 기반 감정 처리 분야의 선행 연구가 감정을 분류하고, 각 감정의 서술적 어휘 목록을 작성하고, 이를 텍스트에서 검색함으로써, 추출된 감정의 정확도가 높지 않았다. 이에 비해, 본 연구에서 제안하는 감정 온톨로지는 다음과 같은 장점을 갖는다. 첫째, 감정 표현의 범주를 기술 대상(언어적 vs. 비언어적)과 방식(표현적, 서술적, 도상적)으로 분류하고, 이질적 특성을 갖는 6개 범주 간 상호 대응관계를 설정함으로써, 멀티모달 환경에 적용할 수 있다. 둘째, 세분화된 감정을 분류할 수 있되, 감정 간 차별성을 가질 수 있도록 24개의 감정 명세를 선별하고, 더 섬세하게 감정을 분류할 수 있는 속성으로 강도와 극성을 설정하였다. 셋째, 텍스트에 나타난 감정 표현을 명시적으로 구분할 수 있도록, 경험자 기술 대상과 방식 언어적 자질에 관한 속성을 도입하였다. 이때 본 연구에서 제안하는 감정 온톨로지가 한국어 처리에 국한되지 않고, 다국어 처리에 활용할 수 있도록 확장성을 고려했다.

  • PDF

Component Analysis for Constructing an Emotion Ontology (감정 온톨로지의 구축을 위한 구성요소 분석)

  • Yoon, Ae-Sun;Kwon, Hyuk-Chul
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.157-175
    • /
    • 2010
  • Understanding dialogue participant's emotion is important as well as decoding the explicit message in human communication. It is well known that non-verbal elements are more suitable for conveying speaker's emotions than verbal elements. Written texts, however, contain a variety of linguistic units that express emotions. This study aims at analyzing components for constructing an emotion ontology, that provides us with numerous applications in Human Language Technology. A majority of the previous work in text-based emotion processing focused on the classification of emotions, the construction of a dictionary describing emotion, and the retrieval of those lexica in texts through keyword spotting and/or syntactic parsing techniques. The retrieved or computed emotions based on that process did not show good results in terms of accuracy. Thus, more sophisticate components analysis is proposed and the linguistic factors are introduced in this study. (1) 5 linguistic types of emotion expressions are differentiated in terms of target (verbal/non-verbal) and the method (expressive/descriptive/iconic). The correlations among them as well as their correlation with the non-verbal expressive type are also determined. This characteristic is expected to guarantees more adaptability to our ontology in multi-modal environments. (2) As emotion-related components, this study proposes 24 emotion types, the 5-scale intensity (-2~+2), and the 3-scale polarity (positive/negative/neutral) which can describe a variety of emotions in more detail and in standardized way. (3) We introduce verbal expression-related components, such as 'experiencer', 'description target', 'description method' and 'linguistic features', which can classify and tag appropriately verbal expressions of emotions. (4) Adopting the linguistic tag sets proposed by ISO and TEI and providing the mapping table between our classification of emotions and Plutchik's, our ontology can be easily employed for multilingual processing.

  • PDF