• Title/Summary/Keyword: HK-40 steel

Search Result 2, Processing Time 0.02 seconds

Magnetic Susceptibility depending on the Thermal Degradation of HK-40 Steel (HK-40강의 열화도에 따른 자화율의 변화)

  • Kim, Jeong-Min;Son, De-Rac;Park, Jong-Seo;Nahm, Seung-Hoon;Kim, Dong-Gyun;Han, Sang-In;Choi, Song-Chun;Ryu, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • Since the used materials of furnace heater tube with different kinds of thermal degradation were not commonly available, the HK-40 steel specimens were heat-treated isothermally at elevated temperature to simulate the microstructure at the service temperature. HK-40 steel specimens with five different aging time were prepared by isothermal heat treatment at $1050^{\circ}C$. The characteristics of the magnetic susceptibility have been investigated for the degradation evaluation of HK-40 steel. The magnetic susceptibility at room temperature increases as the extent of degradation of the materials increases. The variation of magnetic susceptibility was compared with the variation of tensile properties and Vickers hardness. To investigate the effect of the microsturctural change on the characteristics of tensile properties, hardness and magnetic susceptibility, the microstructures were examined by a scanning electron microscope(SEM) and the chemical compositions were analyzed by a energy spectrometer of SEM. As a result, the magnetic susceptibility method can be suggested as one of the nondestructive evaluation methods for the degradation of the HK-40 steel.

Study on Erosion Characteristics of Aged HK40 Steel (열화된 HK40강의 마식특성에 관한 연구)

  • Kim, Am-Kee;Chun, Yong-Du;Lee, Kum-Bae;Kim, Chang-Hoon;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.403-408
    • /
    • 2003
  • The erosion behavior of :artificially aged HK40 steel was investigated. Erosion tests were conducted at room temperature, $200^{\circ}C$ and $400^{\circ}C$ using $Al_2O_3$ particles. Erosion rates increased with increment of temperature. The maximum erosion rate increased with the impingement angle of 30 degree. The erosion rate increased, reached the maximum at 1000 hours, and after that, decreased with heat treatment time. The mechanism of erosion seems to be the cutting wear which is very much associated with the strength of material. As results, the erosion rates were rather affected by the tensile strength and the strain hardening coefficient than the hardness and the yield strength. Such changes of material properties would be caused by the change of micro-structure due to the precipitation of carbide and the dissolution of solid element within matrix during the heat treatment.

  • PDF