• Title/Summary/Keyword: HIP ANGLE

Search Result 435, Processing Time 0.022 seconds

The Kinematic Comparison of Energy Walking and Normal Walking (에너지보행과 일반보행의 운동학적 비교)

  • Shin, Je-Min;Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.61-71
    • /
    • 2006
  • The purpose of this study was to compare kinematic characteristics on the limbs at 3 different walking speed during the energy and the normal walking. Eight subjects performed energy walking and normal walking at the slow speed(65 beats/min), the normal speed(115beats/min), the fast speed(160 beats/min). The 3-d angle was calculated by vector projected with least squares solution with three-dimensional cinematography(Motion Analysis corporation). The range of motion was calculated on the trunk, shoulder, elbow, hip, knee joint. The results showed that stride length was no difference of the two walking pattern. The duration of support phase was also no difference of the two walking pattern. The range of motion of shoulder joint significantly increased in the sagittal and frontal planes, and the range of motion of elbow joint significantly increased as the energy walking. The range of motion of hip joint had no significant difference in the any planes in changing of walking speed. But the most remarkable difference of the two walking patterns revealed at the trunk. The range of flexion/extension angle had significant increasing $2.36^{\circ}$ at normal speed, and the range of the right/left flexion angle had significant increasing below $4^{\circ}$ at the 3 walking speed, and The range of rotation angle had significant increasing $7.35^{\circ}$, $9.22^{\circ}$, respectively at the normal and slow speed. But there was no significant difference of range of motion at the hip and knee joints between energy walking and normal walking.

Change in Kinetics and Kinematics during 1-Footed Drop Landing with an Increase in Upper Body Weight

  • Lee, Jin-Taek;David, O'Sullivan
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to investigate changes in kinetic and kinematic variables associated with an increase in upper body weight. Eighteen healthy male university students($175.96{\pm}4.19\;cm$, $70.79{\pm}8.26\;kg$) participated. Eight motion analysis cameras(Qualysis Oqus 500) and 2 force AMTI platforms(Advanced Mechanical Technologies Inc. OR6-7, US) were used to record motion and forces during the drop landing at a frequency of 120 Hz and 1200 Hz, respectively. QTM software(Qualisys Track Manager) was used to record the data, and the variables were analyzed with Visual 3D and Matlab 2009. For the drop landing, a box of $4{\times}2{\times}0.46\;m$ was constructed from wood. Knee and ankle maximum flexion angle, knee flexion angle, knee and ankle angle at landing, time for maximum ankle flexion after landing, and time for maximum knee flexion after landing were calculated. There was a significant change in the time for maximum and minimum ground force reaction and the time for maximum dorsal flexion after landing(p<.05) with increasing weight. There was no significant change for the hip, knee, and ankle ROM, whereas there was an increase in the angle ROM as the weight increased, in the order of ankle, knee, and hip ROM. This result shows that the ankle joint ROM increased with increasing weight for shock attenuation during the drop landing. There was a trend for greater ankle ROM than knee ROM, but there was no clear change in the ROM of the hip joint with increasing weight. In conclusion, this study shows the importance of ankle joint flexibility and strength for safe drop landing.

Comparison of Three-dimensional Kinematic Changes of the Lower Extremity between the Two Different Braking Distances of Snowplow in Alpine Skiing

  • Kim, Joo-Nyeon;Kim, Jin-Hae;Ryu, Jiseon;Yoon, Sukhoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.361-367
    • /
    • 2016
  • Objective: The aim of this study was to compare three-dimensional kinematic changes of the lower extremity between the two different braking distances during snowplow in alpine skiing. Method: Six alpine ski instructors (age: $25.3{\pm}1.5yr$, height: $169.3{\pm}2.9cm$, weight: $66.2{\pm}5.9kg$, career: $4.2{\pm}2.9yr$) participated in this study. Each skier was asked to perform snowplow on the two different braking distances (2 and 4 m). Results: Snowplow and edging angles (p = .006 and p = .005), ankle adduction and inversion (p = .033 and p = .002), knee extension (p = .003), and hip abduction and internal rotation (p = .043 and p = .006) were significantly greater in the 2 m than in the 4 m braking distance. Conclusion: Based on our results, we suggest that skiers should make greater snowplow and edging angles on the shorter braking distance. In this situation, ankle joint adduction/inversion angle and hip joint internal-rotation make greater snowplow angle, and hip joint abduction make greater edging angle. In addition, greater knee joint extension angle may lead to more posteriorly positioned center of mass.

Reliability of joint angle during sit-to-stand movements in persons with stroke using portable gait analysis system based wearable sensors

  • An, Jung-Ae;Lee, Byoung-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.3
    • /
    • pp.146-151
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the test-retest reliability and concurrent validity of the joint angle of the lower extremities during sit-to-stand movements with wearable sensors based on a portable gait analysis system (PGAS), and the results were compared with a analysis system (MAS) to predict the clinical potential of it. Design: Cross-sectional study. Methods: Sixteen persons with stroke (9 males, 7 females) participated in this study. All subjects had the MAS and designed PGS applied simultaneously and eight sensor units of designed PGAS were placed in a position to avoid overlap with the reflexive markers from MAS. The initial position of the subjects was 90º of hip, knee, and ankle joint flexion while sitting on a chair that was armless and backless. The height of the chair was adjusted to each individual. After each trial, the test administrator checked the quality of data from both systems that measured sit-to-stand for test-retest reliability and concurrent validity. Results: As a result, wearable sensor based designed PGAS and MAS demonstrated reasonable test-retest reliability for the assessment of joint angle in the lower extremities during sit-to-stand performance. The intra-class correlation coefficients (ICCs) for wearable sensor based designed PGAS showed an acceptable test-retest reliability, with ICCs ranging from 0.759 to 0.959. In contrast, the MAS showed good to excellent test-retest reliability, with ICCS ranging from 0.811 to 0.950. In concurrent validity, a significant positive relationship was observed between PGAS and MAS for variation of joint angle during sit-to-stand movements (p<0.01). A moderate to high relationship was found in the affected hip (r=0.665), unaffected hip (r=0.767), affected knee (r=0.876), unaffected knee (r=0.886), affected ankle (r=0.943) and unaffected ankle (r=0.823) respectively. Conclusions: The results of this study indicated that wearable sensor based designed PGAS showed acceptable test-retest reliability and concurrent validity in persons with stroke for sit-to-stand movements and wearable sensors based on developed PGAS may be a useful tool for clinical assessment of functional movement.

Muscle Contraction Onset Time Characteristics of Gluteus Maximus and Hamstring According to Knee Flexion Angles During Prone Hip Extension (엉덩관절 폄 시 무릎 굴곡 각도에 따른 큰볼기근과 뒤넙다리근의 근수축 개시시간 특성)

  • Kim, Yong-Wook;Song, Je-Hyun;Jeong, Yeon-Woo;Lee, Kyeoung-Seok;Guk, Ga-Yeong;Yun, Sung-Joon
    • PNF and Movement
    • /
    • v.18 no.3
    • /
    • pp.375-382
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the muscle contraction onset time characteristics of the gluteus maximus, semitendinosus, and biceps femoris muscles at different knee flexion angles in individuals with shortened or over-lengthened hamstrings performing prone hip extension. Methods: Twenty-six participants were divided into a hamstring shortened group (n = 12) and hamstring lengthened group (n = 14). Wireless surface electromyography was used to verify the muscle onset time of the gluteus maximus, semitendinosus, and biceps femoris when performing prone hip extension at different knee flexion angles. Results: There were significant differences in the muscle onset times of the semitendinosus and biceps femoris between the hamstring shortened group and hamstring lengthened group (p < 0.05). In addition, there was a significant difference in the muscle contraction onset times among of the gluteus maximus, semitendinosus, and biceps femoris muscles when performing prone hip extension at a knee flexion of 90° in the hamstring shortened group (p < 0.05) and a knee flexion angle of 0° in the hamstring lengthened group (p < 0.05). Conclusion: In all groups, there was no effect on the onset time of the gluteus maximus muscle according based on the knee angle. In addition, the knee flexion angles affected the onset time of the muscle contraction of the gluteus maximus muscle in the hamstring shortened group and hamstring lengthened group with an abnormal length of the hamstring muscle.

Comparison of Gluteus Medius Muscle Electromyographic activity at different hip angles and motions (엉덩관절 가동범위에 따른 중간볼기근의 근활성도 비교)

  • Lee, Tae-Sik
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.4
    • /
    • pp.41-46
    • /
    • 2012
  • Background : The purpose of this study was to investigate the electromyographic(EMG) amplitude of the gluteus medius muscle bilaterally at various hip angles and motions(flexion, extension and abduction). Methods : Thirty young with a mean(SD) age of 21.03(1.69) years performed hip motions(flexion, extension and abduction) while the surface EMG activity of the gluteus medius muscles was recorded bilaterally. Subjects were instructed to use the right lower limb during moving 3 different direction. Differences in EMG amplitudes in according with movement direction and angle were assessed by use of paired t-test analyses of variance for the right and left lower extremities. The alpha level was set at .05. Results : Gluteus medius muscle EMG activities in the both side were significantly greater for abduction at angles of 30 degrees than those for other motions at other angles. Conclusion : Hip abduction at angles of 30 degrees on the standing position may be effective in activating the gluteus medius muscle.

  • PDF

A Study for Hip Joint in Children with Cerebral Palsy (뇌성마비 아동의 엉덩관절에 관한 연구)

  • Oh, Tae-young
    • The Journal of Korean Society for Neurotherapy
    • /
    • v.22 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • Purpose The purpose of this study is to identify the prevalence, risk factors, characteristics, and interventions of hip joint problems in children with cerebral palsy, and to be able to serve as leverage for early detection, prevention, and function recovery. Method The electronic journal site was searched by the search terms "cerebral palsy", "hip joint", "hip joint dislocation", we analyzed and descript the cited articles from domestic and foreign papers in Pubmed 9, Science Direct 7, and K RISS analysis and analysis. Results Children with cerebral palsy showed the different prevalence according to their disability type, severity, and functional level, and we knew that abnormal neuromuscular control, stiffness, and biomechanical changes could be risk factors. Migration Index, Acetabolum Index, Neck shaft angle using by radiography and passive ROM test, special tests were available for the diagnosis and evaluation of the hip joint. Combination of physical therapy and orthopedic surgery was very important intervention, and complementary alternative therapy, orthosis, and postural assistant are effective. Conclusion We suggested that early detection and prevention is the most important periodic examination and that a multidisciplinary approach is a major factor in intervention.

Effect of an Arm Sling on Gait with Hemiparesis (팔걸이가 편마비환자의 보행에 미치는 영향)

  • Song, Geun-Ho;Lee, Hyun-Ok
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.4
    • /
    • pp.27-40
    • /
    • 2006
  • Purpose: This study was to investigate the effect of an arm sling on gait with hemiparesis. Methods: Fifteen patients(8 male, 7 female) with hemiparesis participated in this study and walked self-selected speed over 10m walkway, randomly without arm sling, with Single strap hemisling and Rolyan humeral cuff sling. It were filmed by 5 video camera and used with 3-dimensional motion analyzer system. The following gait variables were analyzed: temporo-spatial parameters, kinematic parameters. Results: In the comparison of temporo-spatial parameters each trial, walking velocity and single support time on affected side was significantly increased and step length on affected side, step length asymmetry ratio, single support time asymmetry ratio was significantly decreased in the Single strap hemisling and Rolyan humeral cuff sling. In the comparison of kinematic parameters each trial, maximal angle of the hip flexion on affected side was significantly increased in the Single strap hemisling and Rolyan humeral cuff sling and maximal angle of the knee flexion on affected side was significantly increased in the Rolyan humeral cuff sling and maximal angle of the ankle dorsiflexion on affected side was significantly increased in the Single strap hemisling. Conclusion: An arm sling improved walking velocity and decreased asymmetry and increased maximal angle of hip, knee, ankle flexion on affected side with hemiparesis caused by stroke.

  • PDF

The Relationship Between Hip Abductor and Pelvic Drop During Lateral Step Down in the Elderly

  • Lee, Young-kwon;Jung, Sung-hoon;Yoo, Hwa-ik;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.249-254
    • /
    • 2022
  • Background: The lateral step down (LSD) is a form of stair negotiation used by the elderly because it requires less movement of the lower extremity. Although it is necessary to study the amount of pelvic drop and the strength of a hip abductor during LSD for intervention, limited studies have investigated the relationship between the amount of pelvic drop and strength of a hip abductor during LSD in elderly people. Objects: This study aimed to determine the relationship between the amount of pelvic drop on an unsupported leg and the strength of the hip abductor during LSD in the elderly. Methods: Thirty elderly people (male: 17, female: 13) were recruited. Subjects performed the LSD task, and the evaluator measured and the amount of pelvic drop on an unsupported side. Also, the isometric strength of the hip abductor was measured in a supine position. Results: We found significant relationships between the strength of the hip abductor and the amount of pelvic drop (r = -0.386). The average hip abductor strength normalized by body weight was 1.06 N/kg (max: 1.99, min: 0.52) and the average contralateral pelvic drop (CPD) angle was 4.16° (max: 15.3, min: 0). Conclusion: Our results indicated that the strength of the hip abductor had a moderate correlation with the CPD during a LSD in the elderly. Hip abductor weakness could translate into altered movement of the pelvis.

Comparison of Hip Extensor Muscles Activities According to Forward Trunk Lean Angles During Single-leg Deadlift

  • Saerin Lee;Duk-hyun An
    • Physical Therapy Korea
    • /
    • v.30 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • Background: Excessive hamstring (HS) activation due to the weakness of the gluteus maximus (GM) causes pain in the hip joint. A single-leg deadlift is a hip extensor exercise, especially GM, that includes functional movements in daily life and complex multi-joint training. In single-leg deadlift, the muscle activity depends on the forward trunk lean angle, and it's necessary to study which muscles are used dominantly depending on the angle. Objects: The purpose of this study was to compare the effect on the muscle activity of the GM and HS during single-leg deadlift according to different forward trunk lean angles and the ratio of the GM vs HS (GM/HS). Methods: Twenty-one healthy female participants were recruited. The muscles activities of the GM, HS and the GM/HS ratio were measured through electromyography during single-leg deadlift according to three condition of forward trunk lean angles (30°, 60°, and 90°). Results: The GM and HS activities significantly differed among three conditions (p < 0.05). GM/HS ratio was significantly higher at 30° and 60° of forward trunk lean compared to 90°. Moreover, the GM activity was significantly higher at 60° of forward trunk lean than at 30° (p < 0.05). Conclusion: The single-leg deadlift at 60° of forward trunk lean is a proper GM muscle strengthening exercise.