• Title/Summary/Keyword: HILS Test

Search Result 104, Processing Time 0.025 seconds

Imprementation of Real Time HILS System for Ground Test of Underwater Vehicle (수중 운동체의 육상 모의시험을 위한 실시간 HILS 시스템 구현)

  • Park, Yeong-Il;Choi, Young-Chul;Cho, Kyu-Kab;Lee, Man-Hyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.282-289
    • /
    • 1999
  • To minimize a real world test of underwater guided vehicle, it is necessary to perform a test on ground by using closed loop test techniques. This paper describes implementation of HILS(Hardware In the Loop Simulation) system for ground test and test methodologies for performance evaluation of a guided weapon. HILS system uses a real time distributed computer and a real time processing technique. Ground test results of underwater vehicle are presented for moving and stationary targets by using HILS system.

  • PDF

Development of HILS System for VDC (VDC를 위한 HILS 시스템 개발에 관한 연구)

  • 박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2003
  • HILS(Hardware-ln-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for VDC(Vehicle Dynamics Control) with a valve control system that modulates the brake pressures at low wheels. Two VDC control logics were developed and tested in the HILS system. Test results under various driving conditions are presented in this paper.

Development of HILS System for Performance Analysis of the ABS ECU for Commercial Vehicles (상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 개발)

  • 황돈하;이기창;전정우;김용주;조정목;조중선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.898-906
    • /
    • 2002
  • Antilock Brake System (ABS) is designed to prevent wheels from being locked-up under emergency braking of a vehicle. Therefore it improves directional stability of the vehicle, shortens stopping distance, and enhances maneuvering during braking, regardless of road conditions. Hardware In-the-Loop Simulation (HILS) is an effective tool for design Performance evaluation and test of vehicle subsystems such as ABS, active suspension, and steering systems. This paper describes a HILS model for ABS/ ASR(Acceleration Slip Regulation) system applications. A fourteen degrees-of-freedom vehicle dynamics model is simulated in an alpha-chip processor board. The proposed HILS system is tested with a basic ABS control algorithm. The design and implementation of HILS system for the ABS ECU(Electronic Control Unit) development of commercial vehicle are presented. The results show that the proposed HILS system can be used to test the performance, stability, and reliability of a vehicle under braking.

Modeling and Simulation of a Tugboat's Shaft Generator for HILS Testing (HILS 테스트를 위한 터그보트의 샤프트제너레이터 모델링 및 시뮬레이션)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.216-219
    • /
    • 2021
  • In the Eco-Friendly Ship Act, the shaft generator is an equipment for eco-friendly ships. However, in order to apply the new technology in ships, high reliability is required, and the HILS (hardware in loop system) test is used as a verification method for this. Therefore, in this paper, a shaft generator is modeled and simulated for HILS test of a tugboat to which a shaft generator is applied. Through simulation, it was verified that the charging/discharging of the shaft generator operates according to the scenario.

  • PDF

Performance Evaluation for Several Control Algorithms of the Actuating System Using G/C HILS Technique (비행 전구간 유도제어 HILS 기법을 적용한 구동제어 알고리즘 성능 평가 연구)

  • Jeon, Wan Soo;Cho, Hyeon Jin;Lee, Man Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.114-129
    • /
    • 1996
  • This paper describes the whole development phase for the underwater vehicle actuating system with high hydroload torque disturbance. This includes requirement analysis, system modeling, control algorithm design, real time implementation, test and performance evaluations. As for driving control algorithms, fuzzy logic, variable structure and PD(Proportional-Differential) algorithm were designed and implemented on board controller using a single chip microprocessor. Intel 8797. And test and performance evaluation is carried out both single test and wystem integration test. We could confirm the basic performance of actuating system through the single test and gereral developing work of any actuating systems was finished with a single performance test of actuating system without system integration test. But, we suggested that system integration test be needed. System integration test is carried out using G/C HILS(Guidance and Control Hardware-In-the -Loop Simulation) which is constituted flight motion simulator, load simulator, real time host computer and the related subsystems such as inertial navigation system, power supply system and Guidance and Control Computer etc.. The most important practical contribution of this paper is that full system characteristics such as minimal control effort, enhancement of guidance and autopilot performance by the actuating system using G/C HILS technique are investigated. Through full running G/C HILS, in spite of the passing to single tests, some control algorithm resulted in failure as to stability of full system and system time frame.

  • PDF

A Development of Hardware-in-the Loop Simulation System For a Electric Power Steering System (전동식 동력 조향 장치 연구를 의한 HILS 시스템 개발)

  • Park, Dong-Jin;Yun, Seok-Chan;Han, Chang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2883-2890
    • /
    • 2000
  • In this study, a Hardware-In-The-Loop-Simulation(HILS) system for developing a Electric-Power-Steering(EPS) system is designed. To test a EPS by HILS system, a mathematical vehicle model with a steering system model has been constructed. This mathematical model has been constructed. This mathematical model has been downloaded to the Digital-Signal-Processor(DSP) board. To realize the lateral force acting on the front wheel in a real car. the steering wheel angle sensor and vehicle velocity have been used for input signal. The force sensor has been used for a feedback signal. The full vehicle states could by simulated by the HILS system. Consequently, the HILS system could by used to analyze control-parameters of a EPS that contributes to the maneuverability and stability of a vehicle. At the same time, the HILS system can evaluate the whole performance of the vehicle-steering system. Also the HILS system could do test could not be executed in real vehicle. The HILs system will useful for developing the control logic for the EPS system.

Characteristics Monitoring Technique of HILS System Loop (HILS 시스템 루프 특성 모니터링 기법)

  • Hong, Jeong-Woon;Kim, Young-Joo;Kwak, Byung-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.566-568
    • /
    • 1999
  • HILS is widely used in the test and evaluation of complex control system. This paper describes the structure of HILS and the control loop performance monitoring of HILS system Distal path delay and FMS(Flight Motion Simulator) dynamics were estimated and output of the estimated model were compared with real FMS output. The monitoring system can be used for analyzing the result of HILS.

  • PDF

A Study on HILS Test Modeling and Simulation for Telegraph Controller Verification (Telegraph 제어기 검증을 위한 HILS 테스트 모델링 및 시뮬레이션 연구)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1612-1618
    • /
    • 2021
  • The telegraph controller is a device used to control the speed of a ship, and it is a device that has a very direct effect on the safety of the crew. Accordingly, ship owners demand very high reliability of the telegraph controller, and the classification trend is to introduce HILS (hardware in loop system) test as a method to verify reliability. Therefore, in this paper, an electric propulsion ship was modeled to perform the HILS test of the Telegraph controller. For modeling, the specifications of the electric propulsion tug boat were defined, and the battery parts, propulsion motor parts, and ship model parts were modeled. In addition, various operation scenarios were defined and the Telegraph controller was modeled accordingly. Finally, the results of the integrated model were confirmed through simulation.

Development of the Winch System Model for HILS of the Winch Control System (해상크레인용 윈치 제어시스템 HILS 구축을 위한 윈치 시스템 모델 개발)

  • Lim, Chae-Og;Shin, Sung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.937-946
    • /
    • 2021
  • The floating crane is used to lift the heavyweight on the ocean. The floating crane has a winch system for lifting the heavyweight and the system is controlled by the winch control system. The heavyweight is lifted safely by control of the winch control system. Before the make the control system and controller, there are many restricted conditions to test and validate at design and development steps. In order to solve the problems, commonly use the HILS (Hardware-In-the-Loop-Simulation). HILS is the method of test and validation for the hardware control system. It can be composed of the control system in hardware with surrounding environments which is a virtual model. In this study, we developed the winch system model for HILS of the 150t winch control system in a floating crane. Through this simulation and winch model, it can be applied to HILS for the winch control system.

Implementation of HILS System for Performance Test of the ABS ECU for Commercial Vehicles (상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 구축)

  • Cho, J.M.;Hwang, D.H.;Park, D.Y.;Kim, Y.J.;Joh, J.S.;Park, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2564-2566
    • /
    • 2000
  • HILS(Hardware In-the-Loop Simulation) is an effective tool for design, performance evaluation and test of developed vehicle subsystems such as ABS(Antilock Brake System), suspension, and steering systems. This paper describes a HILS model for an ABS/ASR application. Also the implementation of HILS system for performance test of the ABS ECU(Electronic Control Unit) for commercial vehicles is presented.

  • PDF