• Title/Summary/Keyword: HILS

Search Result 292, Processing Time 0.031 seconds

A Research on Effective Cyber-Physical Systems Tests Using EcoHILS (EcoHILS를 활용한 효율적인 CPS 시험에 관한 연구)

  • Kim, Min-Jo;Kang, Sungjoo;Chun, In-Geol;Kim, Won-Tae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.211-217
    • /
    • 2014
  • Cyber-Physical Systems(CPS) that mostly provides safety-critical and mission-critical services requires high reliability, so that system testing is an essential and important process. Hardware-In-the-Loop Simulation(HILS) is one of the extensively used techniques for testing hardware systems. However, most conventional HILS has problems that it is difficult to support a distributed operating environment and to reuse a HILS platform. In this paper, we introduce EcoHILS(ETRI CPS Open Human-Interactive hardware-in-the-Loop Simulator) in order to test CPS effectively. Moreover, feasibility tests and performance tests of EcoHILS are performed to confirm its effectiveness.

Modeling and Simulation of a Tugboat's Shaft Generator for HILS Testing (HILS 테스트를 위한 터그보트의 샤프트제너레이터 모델링 및 시뮬레이션)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.216-219
    • /
    • 2021
  • In the Eco-Friendly Ship Act, the shaft generator is an equipment for eco-friendly ships. However, in order to apply the new technology in ships, high reliability is required, and the HILS (hardware in loop system) test is used as a verification method for this. Therefore, in this paper, a shaft generator is modeled and simulated for HILS test of a tugboat to which a shaft generator is applied. Through simulation, it was verified that the charging/discharging of the shaft generator operates according to the scenario.

  • PDF

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

A Study on the Development of HILS System for Performance Test of Digital Governor (디지털 조속기의 성능 시험을 위한 HILS 시스템 개발에 관한 연구)

  • 장민규;조성훈;전일영;안병원;박영산;배철오;이성근;김윤식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.317-319
    • /
    • 2003
  • HILS(Hardware In-the Loop Simulation) is commonly used in the development and testing of embedded systems, when those systems cannot be tested easily, thoroughly, and repeated in their operational environments. HILS can be a useful tool to develop products more quickly and cost effectively and also reduces the possibility of serious defects being discovered after production. During the product development period, Design optimization and hardware/software debugging can be performed using HILS skill. This paper describes a HILS model for the STG(Steam-Turbine Generator) Simulator to prove the performance of the developed Digital Governor. It is developed using software technics which can confirm the responses of a real-time system.

  • PDF

Development of HILS System for Performance Analysis of the ABS ECU for Commercial Vehicles (상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 개발)

  • 황돈하;이기창;전정우;김용주;조정목;조중선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.898-906
    • /
    • 2002
  • Antilock Brake System (ABS) is designed to prevent wheels from being locked-up under emergency braking of a vehicle. Therefore it improves directional stability of the vehicle, shortens stopping distance, and enhances maneuvering during braking, regardless of road conditions. Hardware In-the-Loop Simulation (HILS) is an effective tool for design Performance evaluation and test of vehicle subsystems such as ABS, active suspension, and steering systems. This paper describes a HILS model for ABS/ ASR(Acceleration Slip Regulation) system applications. A fourteen degrees-of-freedom vehicle dynamics model is simulated in an alpha-chip processor board. The proposed HILS system is tested with a basic ABS control algorithm. The design and implementation of HILS system for the ABS ECU(Electronic Control Unit) development of commercial vehicle are presented. The results show that the proposed HILS system can be used to test the performance, stability, and reliability of a vehicle under braking.

PC 기반 회전익기/전장품 HILS 환경 개발

  • Choi, Hyoung-Sik;Park, Mu-Hyuk;Nam, Gi-Wook;Ahn, Iee-Ki
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.238-247
    • /
    • 2004
  • Realtime Simulation and HILS are essential tools for modern aircraft control system design and development. But developing the HILS has been a big and complex task to meet the realtime simulation requirement. So these days there have been efforts to minimize these task. New advanced concept and design tools are being developed. In this paper, these new advanced concept and design tools were used to develop the realtime simulation and HILS environment for rotorcraft. The H/W 문 S/W requirement and system configuration for the developing system will be described on the paper.

  • PDF

Establishment of Real-time HILS Environment for Small UAV Using 6 D.O.F Motion Table (6자유도 모션테이블을 이용한 소형 무인항공기용 실시간 HILS 환경 구축)

  • Cha, Hyungkyu;Jeong, Jinseok;Shi, Hayoung;Yoon, Junseok;Kang, Beomsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.326-334
    • /
    • 2019
  • Development of Small UAV using HILS (Hardware In the Loop Simulation) can be effectively used to improve the reliability of UAV (Unmanned Aerial Vehicle) while reducing cost and time. It is also possible to reduce the damage to people or property by simulating the malfunction of the Flight Control Computer (FCC) that may occur during the actual flight. For applying such HILS, a real-time simulation environment capable of providing an environment similar to an actual flight condition is required. In this paper, we constructed a real - time HILS environment for Small UAV using 6 D.O.F motion table. In order to link the 6 D.O.F motion table developed in the previous research with the HILS environment in real time, the motion algorithm was changed from the position control method to the velocity control method. Also, we implemented modeling of inverse kinematics model for command transmission in Matlab $Simulink^{(R)}$ and verified the action of motion table according to the simulation model.

Development of HILS System for VDC (VDC를 위한 HILS 시스템 개발에 관한 연구)

  • 박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2003
  • HILS(Hardware-ln-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for VDC(Vehicle Dynamics Control) with a valve control system that modulates the brake pressures at low wheels. Two VDC control logics were developed and tested in the HILS system. Test results under various driving conditions are presented in this paper.

A real time performance evaluation technique of guidance and control systems (유도조종장치의 실시간 성능평가 기법)

  • 김태연;양태수;김영주;이종하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.165-170
    • /
    • 1992
  • In this paper, the Hardware-In-The-Loop Simulation(HILS) of missile systems are studied. The HILS is an effective performance evaluation technique that bridges the simulation fidelity gap between analytic all-digital simulations and actual flight tests of missile systems. The HILS may be required to perform system integration tests, performance evaluation at system or subsystem level. Major elements of this HILS facility will include the flight table, simulation computers, I/O computer and peripheral equipments. HILS of missile systems typically involve computer modeling of flight dynamics coupled with a hardware guidance and control(G/C) systems. This paper describes a real time performance evaluation technique of a G/C system, Development of a HILS for a Autopilot of SAM G/C will be used as an example.

  • PDF

A Performance Evaluation Method of a Steering HILS System for Vehicle Mechatronic System Development and Test (차량 메카트로닉스 시스템 개발 및 시험을 위한 조향 HILS 시스템의 성능평가 방법론)

  • 김희수;류제하;임재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.164-172
    • /
    • 2001
  • Various HILS systems for developing and testing vehicle mechatronic systems have been proposed and constructed during the last few years. However, performance of those systems have not been evaluated in a systematic way. Based on the transfer function approach, this paper presents a method far evaluating performance such as stable dynamic simulation range of a proposed steering HILS system. In the evaluation, we have investigated effects of time delays that exist in the real-time dynamic simulation, additional actuators, and data transmission on the stable dynamic simulation range, simulation frequency range, and steering feel. This evaluation methodology may be useful to help engineers develop a HILS system for their own purposes.

  • PDF