• 제목/요약/키워드: HILS(Hardware-in-the Loop Simulation)

검색결과 194건 처리시간 0.02초

DEVELOPMENT OF THE INDEPENDENT-TYPE STEER-BY-WIRE SYSTEM USING HILS

  • Jo, H.Y.;Lee, U.K.;Kam, M.S.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.321-327
    • /
    • 2006
  • The previous paper described the logic tuning, the vehicle manufacture and the evaluation in the HILS system for the purpose of the development of a Steer-By-Wire(SBW) system. This paper describes the content of applying to a new HILS system, the vehicle manufacture and the result of the evaluation performed in Independent-type SBW(I-SBW) system. Here, the SBW indicates the method of steering both tires by using one motor as the steering gear actuator, similar to the conventional steering system. On the other hand, the I-SBW means the method of steering both front tires independently by using dual motors as the steering gear actuator. As a result, the layout and the kinematical mechanism of the I-SBW system are quite different from those of the typical steering mechanism. Nevertheless, there is no change in the steering column motor system. In the report, we first describe the structure and control logic of the I-SBW system, and then the control effect on this system as applied for both the HILS system and a vehicle. Furthermore, our HILS system involves the actuator mechanism which realizes the reaction force of the road surface with a minimized frictional force in operation. Therefore, it is possible for us to tune the control logic via the HILS system and confirm the effect of the tuned control logic by applying it to a vehicle with the I-SBW system.

Development of A Lane Departure Monitoring and Control System

  • Huh Kunsoo;Hong Daegun;Stein Jeffrey L.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.1998-2006
    • /
    • 2005
  • The lane departure avoidance systems have been considered promising to assist human drivers in AVCS (Advanced Vehicle Control System). In this paper, a lane departure monitoring and control system is developed and evaluated in the hardware-in-the-loop simulations. This system consists of lane sensing, lane departure monitoring and active steering control subsystems. The road image is obtained based on a vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active steering controller for avoiding the lane departure is designed based on the lane departure metric. The proposed lane departure avoidance system is realized in a steering HILS (hardware-in-the-loop simulation) tool and its performance is evaluated with a driver in the loop.

친환경 자동차용 통합형 전력변환장치의 개발 및 배터리 HILS를 이용한 LDC 검증에 관한 연구 (Development of the Integrated Power Converter for the Environmentally Friendly Vehicle and Validation of the LDC using Battery HILS)

  • 김태훈;송현식;이백행;이찬송;권철순;정도양
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1212-1218
    • /
    • 2014
  • For OBC (On-Board Charger) and LDC (Low DC-DC Converter) used as essential power conversion systems of PHEV (Plug-in Hybrid Electric Vehicle), system performance is required as well as reliability, which is need to protect the vehicle and driver from various faults. While current development processor is sufficient for embodying functions and verifying performance in normal state during development of prototypes for OBC and LDC, there is no clear method of verification for various fault situations that occur in abnormal state and for securing stability of vehicle base, unless verification is performed by mounting on an actual vehicle. In this paper, a CCM (Charger Converter Module) was developed as an integrated structure of OBC and LDC. In addition, diverse fault situations that can occur in vehicles are simulated by a simulator to artificially inject into power conversion system and to test whether it operates properly. Also, HILS (Hardware-in-the-Loop Simulation) is carried out to verify whether LDC is operated properly under power environment of an actual vehicle.

Implementation of Electric Power Assisted Steering System via Hardware-In-Loop-Simulation System

  • Lee, Kil-Soo;Park, Hyung-Gyu;Kim, Myung-Kook;Park, Jung-Hyen;Lee, Man-Hyung
    • 한국항해항만학회지
    • /
    • 제35권4호
    • /
    • pp.303-316
    • /
    • 2011
  • With the development of mechatronics technology in the transporter industry, the electric power assisted steering (EPAS) system has many advantages compared to the hydraulic system. Many manufacturers are developing and applying EPAS systems to improve the performance of the transporter. Using the HILS system developed in the paper, an adaptable EPAS system was developed for real transporter. It was installed in a real, KIA Rio, and tested. Results indicated outstanding performance. Therefore, the developed EPAS can be applied via HILS system.

소형항공기용 Autopilot HILS 시험 (HILS Test for the Small Aircraft Autopilot)

  • 이장호;김응태;성기정
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.172-178
    • /
    • 2009
  • 최근에 개발된 소형제트기는 조종사의 피로경감과 더불어 비행안전성 제고를 위하여 자동비행시스템이 필수적인 요소로 인식되고 있다. 또한, 소형항공기의 항공전자시스템은 집중화된 다중프로세서(centralized multi-processor)와 다중연산 계산구조(multi-process computing architectures)로서 B-777의 Integrated Modular Avionics와 유사한 시스템을 장착하는 추세이다. 이러한 소형항공기 시스템 변화는 고전적 비행방식인 조종사 중심의 비행방식에서 자동비행제어시스템(AFCS) 중심의 비행방식으로의 변화를 야기하였으며 자동 비행제어시스템의 비중은 보다 더 증가하고 있다. 이에 본 논문에서는 상용 소형항공기용 자동비행장치(Autopilot)에 대한 HILS를 구성하여 성능을 검증하였다. 또한, 현재 개발하고 있는 FBW용 FCC(Flight Control Computer)에 탑재될 자동비행 알고리듬에 대한 성능을 PILS를 통하여 확인하였고, 상용 Autopilot에 대한 HILS 결과와 같은 조건에서 비교하여 그 성능을 검증하였다.

  • PDF

재형상 비행제어 시스템의 비행시험 결과 분석 (Analysis on Flight Test Results of Reconfiguration Flight Control System)

  • 민병문;김성필;김봉주;김응태;탁민제
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1244-1252
    • /
    • 2008
  • This paper presents the analysis results obtained by the flight test of reconfiguration flight control system for an aircraft. The reconfiguration flight control system was designed by using control allocation scheme that automatically distributes the demanded control moments determined by control law to each actual control surface. In this paper, some control allocation algorithms for reconfiguration control of general aircraft with redundant control surfaces are summarized and their performance evaluation results through nonlinear simulation and Hardware-In-the-Loop-Simulation (HILS) test are shown. Also, Unmanned Aerial Vehicle (UAV) system adopted as a platform for the flight test of reconfiguration flight controller and the implementation procedure of reconfiguration flight controller into real-time UAV system were introduced. Finally, flight test results were analyzed.

실험실에서 전자전 장비와 고속 기동 무기체계 간 실 교전 모의용 조우 HILS 기술 연구 (The Engagement HILS Technology Research in the Laboratory for Simulated Warfare between Electronic Warfare Equipment and High-speed Maneuvering Weapon System)

  • 신동조;최원석;김소연;이치호
    • 한국시뮬레이션학회논문지
    • /
    • 제28권2호
    • /
    • pp.49-57
    • /
    • 2019
  • 본 논문에서는 실제 교전이 일어나는 3차원 공간에서 고속 기동 중인 미사일 탐색기와 전자전 장비 간 교전 상황을 제한된 실험실 공간에서 교전 모의할 수 있는 HILS 시스템을 구축하기 위한 장치들을 구성할 수 있는 다양한 구현 방법들과 알고리즘에 관하여 기술하였다. 이 연구를 통하여 우리는 미래전장에서 다양한 고속 기동 무기체계들과 전자전 장비 간 실 교전 상황을 모의하는 실험들을 통하여 미래 전자전 장비의 주요 설계 요소들을 분석하는 방법들을 제시할 수 있었다. 즉 우리는 이 연구를 통하여 미래의 실 전자전 장비를 개발할 때 기술적인 위험요소들을 제거하고, 개발비용을 줄이며, 개발 기간을 단축할 수 있도록 도와주는 M&S 기술들을 개발하고 확인하였다. 본 연구결과는 전자전 무기체계 연구개발 분야 뿐 만 아니라 다양한 교전급 무기체계 HILS 연구 및 구축에 큰 도움이 될 수 있을 것으로 판단된다.

HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구 (A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS)

  • 김지웅;김문준;이은준;이경훈;우관제
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.

MR 현가장치를 장착한 승용 차량의 진동제어 (Vibration Control of a Passenger Vehicle Featuring MR Suspension Units)

  • 이환수;최승복;이순규
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.41-48
    • /
    • 2001
  • This paper presents vibration control performance of a passenger vehicle featuring magneto-rheological (MR) suspension units. As a first step, a cylindrical shock absorber is designed and manufactured on the basis of Bingham Property of a commercially available MR fluid. After verifying that the damping force of the shock absorber can be controlled by the intensity of magnetic field(or input current), it is applied to a full-car model. An optimal controller is then formulated to effectively suppress unwanted vibration of the vehicle system. The control performances are evaluated via hardware-in-the-loop simulation(HILS), and presented in both time and frequency domains.

  • PDF

항공기에서 투하되는 수중운동체의 초기정렬기법 연구 (A Study of An Initial Alignment Method of Underwater Vehicle Dropped from Aircraft)

  • 류동기;김삼수
    • 한국군사과학기술학회지
    • /
    • 제6권1호
    • /
    • pp.21-29
    • /
    • 2003
  • The Strap Down Inertial Measurement Unit(SDIMU) is recently used for the sensor package of the modern underwater vehicles such as torpedoes and unmanned underwater-vehicles. For using SDIMU, an initial alignment must be carried out before the fire or navigation stage. The general initial alignment methods require that a mother vehicle Is a stationary condition or the Inertial Navigation System(INS) of vehicle is received the specific of data navigation from the mother vehicle. But an underwater vehicle dropped from aircraft is hard to satisfy above both necessary conditions of the general initial alignment. So, we suggest a new strap down initial alignment method of an underwater vehicle dropped from aircraft without using any aided sensors. The highlight point of this method is that a period of initial alignment is not before the fire but during running stage to fix alignment error. And we verify it by analyzing various data of S/W simulations, Hardware In the Loop Simulation(HILS) tests and sea trials.