• 제목/요약/키워드: HIL thickness

검색결과 10건 처리시간 0.021초

Hybrid Imprint Lithography 공정을 이용한 3D 구조물 제작 (Fabrication of 3-D structures using hybrid imprint lithography)

  • 신상현;김한형;양승국;이종근;오범환;이승걸;이일항;박세근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.509-510
    • /
    • 2008
  • Hybrid Imprint Lithography (HIL) is proposed where photolithography and imprinting processes are employed. Fabrication step of multilevel or three dimensional patterns is suggested. The method of controlling residual layer thickness after imprinting is developed. The thickness of residual layer changes lineally with imprinting time and can be controlled. Polymer patterns fabricated by this HIL is demonstrated.

  • PDF

정공주입층재료 Teflon-AF와 전자주입층재료 Li2CO3의 층수 변화에 따른 유기발광다이오드의 전기·광학적 특성 (Electrical and Optical Properties of OLEDs Depending on the Layer Change of HIL Teflon-AF and EIL Li2CO3)

  • 강용길;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제27권1호
    • /
    • pp.50-55
    • /
    • 2014
  • It was firstly found in 1st group element. Recently, it has been reported on the improvement of efficiency of the OLEDs by introducing thin layer of some carbonate materials of alkali metal. In order to improve the efficiency of OLEDs which is one of the next generation displays, we have studied the electrical characteristics of the device depending on the thickness ratio of the hole-injection layer to the electron-injection layer. Teflon-AF was used as the hole-injection material, and alkali-metal carbonates of $Li_2CO_3$ were used as the electron-injection materials. To obtain a proper thickness ratio, we manufactured. Four types of devices with the thickness ratio of HIL to EIL were made to be 1 : 4, 2 : 3, 3 : 2, and 4 : 1. The results of electrical and optical properties showed that the device with the thickness ratio of 4 : 1 is the most excellent result. In addition, to prepare a four-layer device by inserting the ${\alpha}$-NPD is a hole transporting material was compared with three-layer element. As a result, the maximum luminance, the maximum luminous efficiency, maximum external quantum efficiency of about 124 [%], 164 [%], 106 [%] improve was confirmed.

정공 주입 물질 두께 변화에 따른 유기 발광 다이오우드 효율 향상 (Efficiency Improvement of the Organic Light-Emitting Diodes depending on Thickness Variation of Hole-Infection Materials)

  • 김원종;이영환;차기호;이상교;김태완;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1291-1292
    • /
    • 2006
  • In the structure of ITO/HIL/$Alq_3$/Al device, we investigated an efficiency improvement of the Organic Light-Emitting Diodes depending on thickness variation of hole-injection layer. Using the thermal evaporation in a base vacuum $5{\times}10^{-5}$[Torr], we have measured efficiency after the $Alq_3$ was evaporated to 100 [nm] as a deposition rate $1.5[{\AA}/s]$. In optimal condition, when PTFE thickness increased from 0 to 3.0 [nm], we have obtained that an optimal thickness of PTFE was 2.5 [nm]. And using the PTFE, luminance efficiency and external quantum efficiency of the device were improved by 12.8 times and 11.1 times, respectively.

  • PDF

정공 주입층 CuPc 두께 변화에 따른 유기 발광 소자의 발광 특성 (Electroluminescent Properties of Organic Light-emitting Diodes Depending on the Thickness of CuPc Hole-injection Layer)

  • 이정복;김경환;김태완;이원재
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.899-903
    • /
    • 2013
  • We investigated the luminescence properties of $Alq_3$ in the device structure of ITO/CuPc/TPD/$Alq_3$/Al. The CuPc as a hole-injection material and TPD as hole-transport material. Emission properties were measured by varying a layer thickness of CuPc (0 nm to 50 nm), which is the hole-injection layer. As a result, it was found that the hole injection occurs smoothly when the layer thickness was 20 nm among the thicknesses from 0 nm to 50 nm.

Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack

  • Yaylaci, Murat;Yaylaci, Ecren Uzun;Ozdemir, Mehmet Emin;Ay, Sevil;Ozturk, Sevval
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.501-511
    • /
    • 2022
  • In this study, a two-dimensional model of the contact problem has been examined using the finite element method (FEM) based software ANSYS and based on the multilayer perceptron (MLP), an artificial neural network (ANN). For this purpose, a functionally graded (FG) half-infinite layer (HIL) with a crack pressed by means of two rigid blocks has been solved using FEM. Mass forces and friction are neglected in the solution. Since the problem is analyzed for the plane state, the thickness along the z-axis direction is taken as a unit. To check the accuracy of the contact problem model the results are compared with a study in the literature. In addition, ANSYS and MLP results are compared using Root Mean Square Error (RMSE) and coefficient of determination (R2), and good agreement is found. Numerical solutions are made by considering different values of external load, the width of blocks, crack depth, and material properties. The stresses on the contact surfaces between the blocks and the FG HIL are examined for these values, and the results are presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the contact stress distributions, and also, FEM and ANN can be efficient alternative methods to time-consuming analytical solutions if used correctly.

NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성 (Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness)

  • 최규채;정국채;김영국;조영상;최철진;김양도
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

Needle 코팅을 이용한 미세 PEDOT:PSS 스트라이프 제작 (Fabrication of Fine PEDOT:PSS Stripes Using Needle Coating)

  • 이진영;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.100-104
    • /
    • 2019
  • We have investigated the feasibility of fabricating fine stripes using needle coating for potential applications in solution-processed organic light-emitting diodes (OLEDs). To this end, we have employed an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution that has been widely used as a hole injection layer (HIL) of OLEDs and performed needle coatings by varying the process parameters such as the coating gap and coating speed. As expected, the stripe width is reduced with increasing coating speed. However, the central thickness of the stripe is rather increased as the coating speed increases, which is different from other coating processes such as slot-die and blade coatings. It is due to the fact that the meniscus formed between the needle tip and the substrate varies depending sensitively on the coating speed. It is also found that the stripe width and thickness are reduced with increasing coating gap. To demonstrate its applicability to OLEDs, we have fabricated a red OLED stripe and obtained light emission with the width of about 90㎛.

유기발광다이오드의 전기적 특성에 미치는 Teflon-AF의 영향 (Effect on the Electrical Characteristics of OLEDs Depending on Amorphous Fluoropolymer)

  • 심상민;한현석;강용길;김원종;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.750-754
    • /
    • 2011
  • In this research, the electric characteristic of organic light-emitting diodes(OLEDs) was studied depending on thickness of amorphous fluoropolymer(Teflon-AF) which is the material of hole injection layer to improve electric characteristic of OLEDs. Sample composition was fabricated in double layer. The basic structure was fabricated by ITO/tris(8-hydroxyquinoline) aluminum (Alq3)/Al and the 2 layer was fabricated by ITO/2,2-Bistrifluoromethyl-4,5-Difluoro-1,3-Dioxole(Teflon-AF)/tris(8-hydro xyquinoline) aluminum (Alq3)/Al. The experiment was carried with variation of thickness of Teflon-AF at 1.0, 2.0, 2.5, 3.0 nm. The result showed when Teflon-AF thickness was 2.5 nm, the electric and optical characteristic were well performed. Moreover, when it was compared with Teflon-AF without materials, it was improved 15.1 times more on luminance, 12.7 times more on luminous efficiency and 12.1 times more on external quantum efficiency. Therefore, OLEDs element with optimum hole injection layer reduced energy barrier and driving voltage, and confirmed that it improved efficiency widely.

Polymer/fullerene/LiF inter-layer BHJ 유기태양전지의 광학 및 전기적 특성에 대한 연구 (Electrical and optical characterizations of OSCs based on polymer/fullerene BHJ structures with LiF inter-layer)

  • 송윤석;김승주;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.27-32
    • /
    • 2011
  • In this study, we have investigated the power conversion efficiency of organic solar cells utilizing conjugated polymer/fullerene bulk-hetero junction(BHJ) device structures. We have fabricated poly(3-hexylthiophene)(P3HT), poly[2methoxy-5-(3',7'-dimethyloctyl-oxy)-1-4-phenylenevinylene] as an electron donor, [6,6]-phenyl $C_{61}$ butyric acid methylester(PCBM-$C_{61}$)as an electron acceptor, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS) used as a hole injection layer(HIL), after fabricated active layer, between active layer and metal cathode(Al) deposited LiF interlayer(5 nm). The properties of fabricated organic solar cell(OSC) devices have been analyzed as a function of different thickness. The electrical characteristics of the fabricated devices were investigated by means J-V, fill factor(FF) and power conversion efficiency(PCE). We observed the highest PCEs of 0.628%(MDMO-PPV:PCBM-$C_{61}$) and 2.3%(P3HT:PCBM-$C_{61}$) with LiF inter-layer at the highest thick active layer, which is 1.3times better than the device without LiF inter-layer.

정공 주입층 및 수송층에 따른 고분자 유기발광다이오드의 특성 연구 (The Properties of Hole Injection and Transport Layers on Polymer Light Emitting Diode)

  • 신상배;장호정
    • 마이크로전자및패키징학회지
    • /
    • 제14권4호
    • /
    • pp.37-42
    • /
    • 2007
  • 본 연구에서는 ITO/PEDOT:PSS/PFO:MEH-PPV/LiF/Al의 구조를 갖는 고분자 유기발광다이오드를 제작하여 정공 주입층으로 사용되는 PEDOT:PSS의 두께 변화와 PVK 정공 수송층을 도입하여 ITO/PEDOT:PSS/PVK/PFO:MEH-PPV/LiF/Al 구조를 갖는 고분자 유기발광 다이오드를 제작하여 정공수송층이 유기발광다이오드의 전기 광학적 특성에 미치는 영향에 대하여 조사, 비교하였다. 실험에 사용된 모든 유기물은 플라즈마 처리된 ITO/glass 기판위에 스핀 코팅법으로 도포하였다. 정공 주입층인 PEDOT:PSS 두께를 약 80 nm에서 50 nm로 감소한 경우 PLED 소자의 휘도는 약 $220cd/m^2$ 에서 $450cd/m^2$으로 크게 증가하였다. 이러한 결과는 정공 주입층의 두께가 감소할수록 ITO 전극에서 발생한 정공이 보다 쉽게 발광막으로 전달되기 때문이다. 또한 PVK 정공 수송층을 도입한 PLED소자에서 최대 전류밀도와 휘도는 $268mA/cm^2$$540cd/m^2$ (at 12V)의 값을 각각 나타내었다. PVK 정공 수송층이 도입되지 않은 소자에 비해 전류밀도는 약 14%, 휘도는 약 22%의 특성개선을 나타내었다.

  • PDF