• Title/Summary/Keyword: HIL(Hardware-in-the-Loop) simulation

Search Result 76, Processing Time 0.043 seconds

Evaluating System for Fuel Injector with the Condition of a Driving Vehicle Mode Using an ECU HILS (ECU HILS를 이용한 실차 주행 조건에서의 인젝터 평가시스템)

  • Lee, Choong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.812-828
    • /
    • 2010
  • A fuel injection system using an ECU HILS as an alternate to a vehicle test for the fuel injectors was developed. The throttle position, vehicle speed, engine speed, crank position, cam position, intake air flow, and several other sensor signals that are supplied to the ECU were measured and recorded as a data file for a vehicle driven in the FTP-75 mode in a chassis dynamometer. Electric signals that are equivalent to the sensor signals from the vehicle are reconstructed from the recorded data file using data acquisition boards, microprocessors, and computers. All sensor signals are supplied to the ECU with synchronized timing using a computer program. The findings show that the cost and time of vehicle experiments can be reduced using the ECU HILS system. Moreover, the repeatability of the generation of sensor signals can enhance the accuracy of a range of experiment related to vehicle testing. An ECU scanner that scans the sensor signals that are input to the ECU through a serial port was used to assess the accuracy of the reconstructed signals. The scanning results show good agreement with the reconstructed input signals. Injectors were connected to the ECU HILS system and were driven by the system to measure the quantity of injected fuel.

HILS Test for the Small Aircraft Autopilot (소형항공기용 Autopilot HILS 시험)

  • Lee, Jang-Ho;Kim, Eung-Tai;Seong, Ki-Jeong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.172-178
    • /
    • 2009
  • Recently, autopilot is essential to reduce pilot's workload and increase flight safety. Avionics system of the small aircraft also has progressively adopted centralized multi-processor and multi-process computing architectures similar to the integrated modular avionics of B-777. It is increased more and more that importance of the flight control system. In this paper, the performance of the autopilot for the small aircraft has been verified with Hardware-In-the-Loop Simulation(HILS). Also, the autopilot algorithm that is operated in the Flight Control Computer(FCC) for the Fly by Wire(FBW) was verified with PILS and compared with the HILS results for the several commercial autopilots.

  • PDF

MRAS Based Speed Estimator for Sensorless Vector Control of a Linear Induction Motor with Improved Adaptation Mechanisms

  • Holakooie, Mohammad Hosein;Taheri, Asghar;Sharifian, Mohammad Bagher Bannae
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1274-1285
    • /
    • 2015
  • This paper deals with model reference adaptive system (MRAS) speed estimators based on a secondary flux for linear induction motors (LIMs). The operation of these estimators significantly depends on an adaptation mechanism. Fixed-gain PI controller is the most common adaptation mechanism that may fail to estimate the speed correctly in different conditions, such as variation in machine parameters and noisy environment. Two adaptation mechanisms are proposed to improve LIM drive system performance, particularly at very low speed. The first adaptation mechanism is based on fuzzy theory, and the second is obtained from an LIM mechanical model. Compared with a conventional PI controller, the proposed adaptation mechanisms have low sensitivity to both variations of machine parameters and noise. The optimum parameters of adaptation mechanisms are tuned using an offline method through chaotic optimization algorithm (COA) because no design criterion is given to provide these values. The efficiency of MRAS speed estimator is validated by both numerical simulation and real-time hardware-in-the-loop (HIL) implementations. Results indicate that the proposed adaptation mechanisms improve performance of MRAS speed estimator.

Development of a Model Based Predictive Controller for Lane Keeping Assistance System (모델기반 예측 제어기를 이용한 차선유지 보조 시스템 개발)

  • Hwang, Jun-Yeon;Huh, Kun-Soo;Na, Hyuk-Min;Jung, Ho-Gi;Kang, Hyung-Jin;Yoon, Pal-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.54-61
    • /
    • 2009
  • Lane keeping assistant system (LKAS) could save thousands of lives each year by maintaining lane position and is regarded as a promising active safety system. The LKAS is expected to reduce the driver workload and to assist the driver during driving. This paper proposes a model based predictive controller for the LKAS which requires cooperative driving between the driver and the assistance system. A Hardware-In-the-Loop-Simulator (HILS) is constructed for its evaluation and includes Carsim, Matlab Simulink and a lane detection algorithm. The single camera is mounted with the HILS to acquire the monitor images and to detect the lane markers. The simulation is conducted to validate the LKAS control performance in various road scenario.

Development of Operation Scenarios by HILS for the Energy Storage System Operated with Renewable Energy Source (HILS를 이용한 신재생 에너지원이 포함된 에너지 저장시스템의 운영 시나리오 개발)

  • Shin, Dong-Cheol;Jeon, Jee-Hwan;Park, Sung-Jin;Lee, Dong-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.224-232
    • /
    • 2018
  • According to government policy, renewable energy facility such as solar power generation is being implemented for newly constructed buildings. In recent years, the introduction of Energy Storage System (ESS) served as an emergency power for replacing an existing diesel generator has been increasing. Furthermore, in order to expand the efficacy of the ESS operation, operation in combination with renewable energy sources such as solar and wind power generation is increasing. Hence, development of the ESS operation algorithms for emergency mode as well as the peak power cut mode, which is the essential feature of ESS, are necessary. The operational scenarios of ESS need to consider load power requirement and the amount of the power generation by renewable energy sources. For the verification of the developed scenarios, tests under the actual situation are demanded, but there is a difficulty in simulating the emergency operation situation such as system failure in the actual site. Therefore, this paper proposes simulation models for the HILS(Hardware In the Loop Simulation) and operation modes developed through HILS for the ESS operated with renewable energy source under peak power reduction and emergency modes. The paper shows that the ESS operation scenarios developed through HILS work properly at the actual site, and it verifies the effectiveness of the control logic developed by the HILS.

Operation System Design of Distribution Feeder with Distributed Energy Resources (분산전원이 연계된 배전선로의 운영시스템 설계)

  • Kim, Seong-Man;Chang, Young-Hak;Kim, Kyeong-Hun;Kim, Sul-Ki;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1183-1194
    • /
    • 2021
  • Traditionally, electric power systems have been known as the centralized structures, which is organized into placing customers at the end of the supply chain. However, recent decades have witnessed the emergence of distributed energy resources(:DERs) such as rooftop solar, farming PV system, small wind turbines, battery energy storage systems and smart home appliances. With the emergence of distributed energy resources, the role of distributed system operators(:DSOs) will expand. The increasing penetration of DERs could lead to a less predictable and reverse flow of power in the system, which can affect the traditional planning and operation of distribution and transmission networks. This raises the need for a change in the role of the DSOs that have conventionally planned, maintained and managed networks and supply outages. The objective of this research is to designed the future distribution operation system with multi-DERs and the proposed distribution system model is implemented by hardware-in-the-loop simulation(HILS). The test results show the normal operation domain and reduction of distribution line loss.