• 제목/요약/키워드: HII regions

검색결과 57건 처리시간 0.024초

LARGE-SCALE [OIII] AND [CII] DISTRIBUTIONS OF THE LARGE MAGELLANIC CLOUD WITH FIS-FTS

  • Takahashi, A.;Yasuda, A.;Kaneda, H.;Kawada, M.;Kiriyama, Y.;Mouri, A.;Mori, T.;Okada, Y.;Takahashi, H.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.219-220
    • /
    • 2012
  • We present the results of far-infrared spectroscopic observations of the Large Magellanic Cloud (LMC) with FIS-FTS. We covered a large area across the LMC, including 30 Doradus (30 Dor) and N44 star-forming regions, by 191 pointings in total. As a result, we detect the [OIII] and [CII] line emission as well as far-infrared dust continuum emission throughout the LMC. We find that the [OIII] emission is widely distributed around 30 Dor. The observed size of the distribution is too large to be explained by massive stars in 30 Dor, which are assumed to be enshrouded by clouds with the constant gas density estimated from the [OIII] line intensities. Therefore the surrounding structure is likely to be highly clumpy. We also find a global correlation between the [OIII] and the far-infrared continuum emission, suggesting that the gas and dust are well mixed in the highly-ionized region where the dust survives in clumpy dense clouds shielded from energetic photons. Furthermore we find that the ratios of [CII]/CO are as high as 110,000 in 30 Dor, and 45,000 even on average, while they are typically 6,000 for star-forming regions in our Galaxy. The unusually high [CII]/CO is also consistent with the picture of clumpy small dense clouds.

HCN and HNC abundance ratio toward three different phases of massive star formation

  • 진미화;이정은;김기태
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.50.2-50.2
    • /
    • 2013
  • In the process of star formation, the density and temperature of associated material, which are the physical conditions for the molecular chemistry, vary dramatically. As a result, the connection between physical and chemical conditions has been used to trace the evolutionary stages in star formation. One chemical tracer for the physical conditions in star forming material is the [HCN]/[HNC] abundance ratio since the ratio strongly depends on the kinetic temperature in molecular clouds. Here we investigate the [HCN]/[HNC] abundance ratios in objects related to the massive star formation. For the investigation, we carried out $H^{13}CN$ and $HN^{13}C$ line observation toward objects in three different evolutionary stages of massive star formation: Infrared dark clouds (IRDCs), High-mass protostellar object (HMPOs), and Ultra-compact HII regions (UCHIIs). According to our observational results, both $H^{13}CN$ and $HN^{13}C$ lines have been detected toward 19 IRDCs, 25 HMPOs, and 31 UCHIIs. We will discuss about the [HCN]/[HNC] abundance ratios in different evolutionary stages of massive star formation and associate the results with the physical conditions of the targets.

  • PDF

PROPERTIES OF THE MOLECULAR CLUMP AND THE ASSOCIATED ULTRACOMPACT H II REGION IN THE GAS SHELL OF THE EXPANDING H II REGION SH 2-104

  • Minh, Young Chol;Kim, Kee-Tae;Yan, Chi-Hung;Park, Yong-Sun;Lee, Seokho;Lal, Dharam Vil;Hasegawa, Tatsuhiko;Zhang, X.Z.;Kuan, Yi-Jeng
    • 천문학회지
    • /
    • 제47권5호
    • /
    • pp.179-185
    • /
    • 2014
  • We study the physical and chemical properties of the molecular clump hosting a young stellar cluster, IRAS 20160+3636, which is believed to have formed via the "collect and collapse" process. Physical parameters of the UC H II region associated with the embedded cluster are measured from the radio continuum observations. This source is found to be a typical Galactic UC H II region, with a B0.5 type exciting star, if it is ionized by a single star. We derive a CN/HCN abundance ratio larger than 1 over this region, which may suggest that this clump is being affected by the UV radiation from the H II region.

THE EVOLUTION OF THE GALACTIC GLOBULAR CLUSTERS.: II. HELIUM ABUNDANCES AND AGES

  • Lee, See-Woo
    • 천문학회지
    • /
    • 제18권2호
    • /
    • pp.41-69
    • /
    • 1985
  • For the well observed 16 globular clusters with known metal abundance (Z), the helium abundances (Y) and ages are determined by various methods, and the relations between Y, Z and age are examined. The luminosity $L_{RR}$ of RR Lyrae stars is known to be dependent of evolutionary models and pulsation theory in the sense that the pulsation theory and horizontal branch (HB) models yield the anticorrelation between $L_{RR}$ and Z whereas main sequence (MS) and red giant branch (RGB) models yield the direct correlation between them. Similarly the anticorrelation between Y and Z is obtained from the HB models and pulsation theory whereas the direct correlation between them is obtained when the RGB model is applied. The current evolutionary models yield the anticorrelation between Z and age of clusters whenever the direct correlation between Y and Z holds. However when the anticorrelation between Y and Z is applied for age determination, the similar age of clusters is obtained as shown by Sandage (1982b). The ages, which are determined by the fitting of C-M diagrams to isochrones in the ($M_v$, B-V)-plane, suggest the two different chemical enrichment processes, which could be accounted for by the disk-halo model for the chemical evolution of the Galaxy (Lee and Ann 1981). Also it is known that the R-method is very useful for Y-determination and the derived Y's show the increasing rate of $\frac{{\Delta}Y}{{\Delta}Z}{\simeq}0.5$ which is comparable to the observed value of $\frac{{\Delta}Y}{{\Delta}Z}{\simeq}0.3$ from HII regions and planetary nebulae by Peimbert and Torres-Peimbert (1976). In this case, the age-metallicity relation of globular clusters could be explained by the disk-halo model.

  • PDF

SEJONG OPEN CLUSTER SURVEY (SOS) - V. THE ACTIVE STAR FORMING REGION SH 2-255 - 257

  • LIM, BEOMDU;SUNG, HWANKYUNG;HUR, HYEONOH;LEE, BYEONG-CHEOL;BESSELL, MICHAEL S.;KIM, JINYOUNG S.;LEE, KANG HWAN;PARK, BYEONG-GON;JEONG, GWANGHUI
    • 천문학회지
    • /
    • 제48권6호
    • /
    • pp.343-355
    • /
    • 2015
  • There is much observational evidence that active star formation is taking place in the Hii regions Sh 2-255 – 257. We present a photometric study of this star forming region (SFR) using imaging data obtained in passbands from the optical to the mid-infrared, in order to study the star formation process. A total of 218 members were identified using various selection criteria based on their observational properties. The SFR is reddened by at least E(B −V ) = 0.8 mag, and the reddening law toward the region is normal (RV = 3.1). From the zero-age main sequence fitting method it is confirmed that the SFR is 2.1 ± 0.3 kpc from the Sun. The median age of the identified members is estimated to be about 1.3 Myr from a comparison of the Hertzsprung-Russell diagram (HRD) with stellar evolutionary models. The initial mass function (IMF) is derived from the HRD and the near-infrared (J, J −H) color-magnitude diagram. The slope of the IMF is about Γ = −1.6 ± 0.1, which is slightly steeper than that of the Salpeter/Kroupa IMF. It implies that low-mass star formation is dominant in the SFR. The sum of the masses of all the identified members provides the lower limit of the cluster mass (169M). We also analyzed the spectral energy distribution (SED) of pre-main sequence stars using the SED fitting tool of Robitaille et al., and confirm that there is a significant discrepancy between stellar mass and age obtained from two different methods based on the SED fitting tool and the HRD.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF