• 제목/요약/키워드: HIF-1

Search Result 204, Processing Time 0.028 seconds

Significance of Tissue Expression and Serum Levels of Angiopoietin-like Protein 4 in Breast Cancer Progression: Link to NF-κB /P65 Activity and Pro-Inflammatory Cytokines

  • Shafik, Noha M;Mohamed, Dareen A;Bedder, Asmaa E;El-Gendy, Ahmed M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8579-8587
    • /
    • 2016
  • Background: The molecular mechanisms linking breast cancer progression and inflammation still remain obscure. The aim of the present study was to investigate the possible association of angiopoeitin like protein 4 (ANGPTL4) and its regulatory factor, hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$), with the inflammatory markers nuclear factor kappa B/p65 (NF-${\kappa}B$/P65) and interleukin-1 beta (IL-$1{\beta}$) in order to evaluate their role in inflammation associated breast cancer progression. Materials and Methods: Angiopoietin-like protein 4 (ANGPTL4) mRNA expressions were evaluated using quantitative real time PCR and its protein expression by immunohistochemistry. DNA binding activity of NF-${\kappa}B$/P65 was evaluated by transcription factor binding immunoassay. Serum levels of ANGPTL4, HIF-$1{\alpha}$ and IL-$1{\beta}$ were immunoassayed. Tumor clinico-pathological features were investigated. Results: ANGPTL4 mRNA expressions and serum levels were significantly higher in high grade breast carcinoma ($1.47{\pm}0.31$ and $184.98{\pm}18.18$, respectively) compared to low grade carcinoma ($1.21{\pm}0.32$ and $171.76{\pm}7.58$, respectively) and controls ($0.70{\pm}0.02$ and $65.34{\pm}6.41$, respectively), (p<0.05). Also, ANGPTL4 high/moderate protein expression was positively correlated with tumor clinico-pathological features. In addition, serum levels of HIF-$1{\alpha}$ and IL-$1{\beta}$ as well as NF-${\kappa}B$/P65 DNA binding activity were significantly higher in high grade breast carcinoma ($148.54{\pm}14.20$, $0.79{\pm}0.03$ and $247.13{\pm}44.35$ respectively) than their values in low grade carcinoma ( $139.14{\pm}5.83$, $0.34{\pm}0.02$ and $184.23{\pm}37.75$, respectively) and controls ($33.95{\pm}3.11$, $0.11{\pm}0.02$ and $7.83{\pm}0.92$, respectively), (p<0.001). Conclusion: ANGPTL4 high serum levels and tissue expressions in advanced grade breast cancer, in addition to its positive correlation with tumor clinico-pathological features and HIF-$1{\alpha}$ could highlight its role as one of the signaling factors involved in breast cancer progression. Moreover, novel correlations were found between ANGPTL4 and the inflammatory markers, IL-$1{\beta}$ and NF-${\kappa}B$/p65, in breast cancer, which may emphasize the utility of these markers as potential tools for understanding interactions for axes of carcinogenesis and inflammation contributed for cancer progression. It is thus hoped that the findings reported here would assist in the development of new breast cancer management strategies that would promote patients' quality of life and ultimately improve clinical outcomes. However, large-scale studies are needed to verify these results.

Significance of $p27^{kip1}$ as potential biomarker for intracellular oxidative status

  • Quintos, Lesley;Lee, In-Ae;Kim, Hyo-Jung;Lim, Ji-Sun;Park, Ji-A;Sung, Mi-Kyung;Seo, Young-Rok;Kim, Jong-Sang
    • Nutrition Research and Practice
    • /
    • v.4 no.5
    • /
    • pp.351-355
    • /
    • 2010
  • Our previous proteomic study demonstrated that oxidative stress and antioxidant delphinidin regulated the cellular level of $p27^{kip1}$ (referred to as p27) as well as some heat shock proteins in human colon cancer HT 29 cells. Current study was conducted to validate and confirm the regulation of these proteins using both in vitro and in vivo systems. The level of p27 was decreased by hydrogen peroxide in a dose-dependent manner in human colon carcinoma HCT 116 (p53-positive) cells while it was increased upon exposure to hydrogen peroxide in HT 29 (p53-negative) cells. However, high concentration of hydrogen peroxide (100 ${\mu}M)$ downregulated p27 in both cell lines, but delphindin, one of antioxidative anthocyanins, enhanced the level of p27 suppressed by 100 ${\mu}M$ hydrogen peroxide. ICR mice were injected with varying concentrations of hydrogen peroxide, delphinidin and both. Western blot analysis for the mouse large intestinal tissue showed that the expression of p27 was upregulated by 25 mg/kg BW hydrogen peroxide. To investigate the association of p27 regulation with hypoxia-inducible factor 1-beta (HIF-$1{\beta}$), the level of p27 was analyzed in wild-type mouse hepatoma hepa1c1c7 and Aryl Hydrocarbon Nuclear Translocator (arnt, HIF-$1{\beta}$)-defective mutant BPRc1 cells in the absence and presence of hydrogen peroxide and delphinidin. While the level of p27 was responsive to hydrogen peroxide and delphinidin, it remained unchanged in BPRc1, suggesting that the regulation of p27 requires functional HIF-$1{\beta}$. We also found that hydrogen peroxide and delphinidin affected PI3K/Akt/mTOR signaling pathway which is one of upstream regulators of HIFs. In conclusion, hydrogen peroxide and antioxidant delphinidin seem to regulate intracellular level of p27 through regulating HIF-1 level which is, in turn, governed by its upstream regulators comprising of PI3K/Akt/mTOR signaling pathway. The results should also encourage further study for the potential of p27 as a biomarker for intracellular oxidative or antioxidant status.

Wheatgrass extract inhibits hypoxia-inducible factor-1-mediated epithelial-mesenchymal transition in A549 cells

  • Do, Nam Yong;Shin, Hyun-Jae;Lee, Ji-Eun
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Epithelial-mesenchymal transition (EMT) is involved in not only cancer development and metastasis but also non-cancerous conditions. Hypoxia is one of the proposed critical factors contributing to formation of chronic rhinosinusitis or nasal polyposis. Wheatgrass (Triticum aestivum) has antioxidant, anti-aging, and anti-inflammatory effects. In this study, we analyzed whether wheatgrass has an inhibitory effect on the EMT process in airway epithelial cells. MATERIALS/METHODS: A549 human lung adenocarcinoma cells were incubated in hypoxic conditions ($CO_2$ 5%/$O_2$ 1%) for 24 h in the presence of different concentrations of wheatgrass extract (50, 75, 100, and $150{\mu}g/mL$) and changes in expression of epithelial or mesenchymal markers were evaluated by immunoblotting and immunofluorescence. Accordingly, associated EMT-related transcriptional factors, Snail and Smad, were also evaluated. RESULTS: Hypoxia increased expression of N-cadherin and reduced expression of E-cadherin. Mechanistically, E-cadherin levels were recovered during hypoxia by silencing hypoxia inducible factor (HIF)-$1{\alpha}$ or administering wheatgrass extract. Wheatgrass inhibited the hypoxia-mediated EMT by reducing the expression of phosphorylated Smad3 (pSmad3) and Snail. It suppressed the hypoxia-mediated EMT processes of airway epithelial cells via HIF-$1{\alpha}$ and the pSmad3 signaling pathway. CONCLUSION: These results suggest that wheatgrass has potential as a therapeutic or supplementary agent for HIF-1-related diseases.

Immunohistochemical Study of Steroidogenesis, Proliferation, and Hypoxia-related Proteins in Caprine Corpora Lutea during the Estrous Cycle

  • Chiu, C.H.;Srinivasan, R.;Tseng, T.H.;Chuang, R.F.;Wu, L.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.636-642
    • /
    • 2009
  • The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a product required for the establishment and maintenance of pregnancy. In the absence of pregnancy, the production of progesterone in the CL decreases and the structure itself regresses in size. The life span and function of the CL are regulated by complex interactions between stimulatory (luteotrophic) and inhibitory (luteolytic) mediators. When an ovum is released from a mature follicle, angiogenesis and rapid growth of follicular cells form the CL. The purpose of the present study was to determine whether steroidogenesis, proliferation, and hypoxiarelated proteins are expressed in caprine CL. The expression of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor $1{\alpha}$ (HIF-$1{\alpha}$) were determined in caprine CL during the estrous cycle. Cytochrome P450 side chain cleavage protein did not vary significantly during the estrous cycle; however, there was an increased expression of $3{\beta}$ -hydroxysteroid dehydrogenase in the early and middle stages, which rapidly decreased in the late stage. The same observations were made with respect to steroidogenic acute regulatory protein. Variations in progesterone content and expression of PCNA, HIF-$1{\alpha}$, and VEGF were consistent with this result. Thus, the steroidogenic proteins, PCNA, HIF-$1{\alpha}$, and VEGF in caprine CL are dependent on the stage of the estrous cycle.

Tumor Inhibition Effects and Mechanisms of Angelica sinensis and Sophorae flavescentis ait Decoction Combined with Cisplatin in Xenograft Mice

  • Yan, De-Qi;Liu, Yong-Qi;Li, Ying-Dong;Li, Dou;Cheng, Xiao-Li;Wu, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4609-4615
    • /
    • 2014
  • Background: To investigate tumor inhibition effects and mechanisms of Angelica sinensis and Sophorae flavescentis ait decoction (ASSF) combined with diamine-dichloroplatinum (DDP). Materials and Methods: Bodyweight, tumor inhibition rate and q value were calculated for single ASSF or ASSF combined with DDP on H22 carcinoma xenograft KM mice. Biochemical methods for serum LDH, AST, ALT, and AKP, ELISA method for serum HIF-$1{\alpha}$, pathological assessemnt of thymus, immunohistochemistry detection of tumor tissue caspase3 and mutant p53 protein, and qRT-PCR detection of bax/ bcl-2 mRNA were applied. Results: Compared with DDP control group, the bodyweight increased in ASSF-DDP group (p<0.01). Tumor inhibition rates for DDP, ASSF, ASSF-DDP were 62.7%. 43.7% and 71.0% respectively, with a q value of 0.90. Compared with other groups, thymus of DDP control group had obvious pathological injury (p<0.01), serum LDH, AST, ALT, AKP increased significantly in DDP control group (p<0.01), while serum HIF-$1{\alpha}$ was increased in the model control group. Compared with this latter, the expression of mutant p53 protein and bcl-2 mRNA were decreased in all treatment groups (p<0.01), but there were no statistical difference between DDP control p and ASSF-DDP groups. The expression of caspase3 protein and bax mRNA was increased in all treatment groups, with statistical differences between the DDP and ASSF-DDP groups (p<0.01). Conclusions: ASSF can inhibit bodyweight decrease caused by DDP, can inhibit tumor growth synergistically with DDP mainly through increasing serum HIF-$1{\alpha}$ and pro-apoptotic molecules such as caspase 3 and bax, rather than through decreasing anti-apoptotic mutant p53 and bcl-2. ASSF can reduce DDP toxicity due to decreasing the release of LDH, AST, ALT, AKP into blood and enhancing thymus protection.

Insufficient radiofrequency ablation-induced autophagy contributes to the rapid progression of residual hepatocellular carcinoma through the HIF-1α/BNIP3 signaling pathway

  • Xu, Wen-Lei;Wang, Shao-Hong;Sun, Wen-Bing;Gao, Jun;Ding, Xue-Mei;Kong, Jian;Xu, Li;Ke, Shan
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.277-282
    • /
    • 2019
  • Currently speaking, it is noted that radiofrequency ablation (RFA) has been the most widely used treatment for hepatocellular carcinoma (HCC) occurring in patients. However, accumulating evidence has demonstrated that the incidence of insufficient RFA (IRFA) may result in the identified rapid progression of residual HCC in the patient, which can greatly hinder the effectiveness and patient reported benefits of utilizing this technique. Although many efforts have been proposed, the underlying mechanisms triggering the rapid progression of residual HCC after IRFA have not yet been fully clarified through current research literature reviews. It was shown in this study that cell proliferation, migration and invasion of residual HepG2 and SMMC7721 cells were significantly increased after the IRFA was simulated in vitro. In other words, it is noted that IRFA could do this by enhancing the image of autophagy of the residual HCC cell via the $HIF-1{\alpha}/BNIP3$ pathway. Consequently, the down-regulation of BNIP3 may result in the inhibition of the residual HCC cell progression and autophagy after IRFA. Our present study results suggest that IRFA could promote residual HCC cell progression in vitro by enhancing autophagy via the $HIF-1{\alpha}/BNIP3$ pathway. For this reason, it is noted that the targeting of the BNIP3 may be useful in preventing the rapid growth and metastasis of residual HCC after IRFA.

Effect of Antioxidant Enzymes on Hypoxia-Induced HIF-$1{\alpha}$ Accumulation and Erythropoietin Activity

  • Cho, Eun-Jin;Cho, Ki-Woon;Chung, Kyoung-Jin;Yang, Hee-Young;Park, Hyang-Rim;Park, Byung-Ju;Lee, Tae-Hoon
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.205-213
    • /
    • 2009
  • The mechanisms underlying the actions of the antioxidants upon reactive oxygen species (ROS) generation by NADPH oxidase complex have remained uncertain. In this study, we investigated NADPH oxidase activity and the role of antioxidant enzymes upon the generation of ROS during hypoxic stress. ROS generation was found to increase in the mouse kidney under hypoxic stress in a time-dependent manner. Moreover, we found in MCT cells that hypoxia-induced hydrogen peroxide production was decreased by NAC pretreatment. We further analyzed HIF-$1{\alpha}$, PHD2 and VHL expression in the NAC-pretreated MCT cells and assessed the response of antioxidant enzymes at the transcriptional and translational levels. SOD3 and Prdx2 were significantly increased during hypoxia in the mouse kidney. We also confirmed in hypoxic $Prdx2^{-/-}$ and SOD3 transgenic mice that erythropoietin (EPO) is transcriptionally regulated by HIF-$1{\alpha}$. In addition, although EPO protein was found to be expressed in a HIF-$1{\alpha}$ independent manner in three mouse lines, its activity differed markedly between normal and $Prdx2^{-/-}$/SOD3 transgenic mice during hypoxic stress. In conclusion, our current results indicate that NADPH oxidase-mediated ROS generation is associated with hypoxic stress in the mouse kidney and that SOD3 and Prdx2 cooperate to regulate cellular redox reactions during hypoxia.

Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis

  • Cho, Hyung-Ju;Kim, Chang-Hoon
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.59-64
    • /
    • 2018
  • The airway epithelium is the first place, where a defense mechanism is initiated against environmental stimuli. Mucociliary transport (MCT), which is the defense mechanism of the airway and the role of airway epithelium as mechanical barriers are essential in innate immunity. To maintain normal physiologic function, normal oxygenation is critical for the production of energy for optimal cellular functions. Several pathologic conditions are associated with a decrease in oxygen tension in airway epithelium and chronic sinusitis is one of the airway diseases, which is associated with the hypoxic condition, a potent inflammatory stimulant. We have observed the overexpression of the hypoxia-inducible factor 1 (HIF-1), an essential factor for oxygen homeostasis, in the epithelium of sinus mucosa in sinusitis patients. In a series of previous reports, we have found hypoxia-induced mucus hyperproduction, especially by MUC5AC hyperproduction, disruption of epithelial barrier function by the production of VEGF, and down-regulation of junctional proteins such as ZO-1 and E-cadherin. Furthermore, hypoxia-induced inflammation by HMGB1 translocation into the cytoplasm results in the release of IL-8 through a ROS-dependent mechanism in upper airway epithelium. In this mini-review, we briefly introduce and summarize current progress in the pathogenesis of sinusitis related to hypoxia. The investigation of hypoxia-related pathophysiology in airway epithelium will suggest new insights on airway inflammatory diseases, such as rhinosinusitis for clinical application and drug development.