• 제목/요약/키워드: HIF-1$\alpha$

검색결과 157건 처리시간 0.027초

$CoCl_2$로 유도된 C6 신경교세포의 사멸에 대한 억간산(抑肝散)의 보호 효과 (Protective Effects of Ukgan-san in $CoCl_2$-induced Cell Death of C6 Glial Cells)

  • 조문영;신용진;하예진;우찬;김태정;유주연;최용석;최정훈;신선호
    • 대한한방내과학회지
    • /
    • 제34권2호
    • /
    • pp.178-191
    • /
    • 2013
  • Objectives : In this study, we made an effort to investigate the protective mechanism of Ukgan-san (UGS) extracts on hypoxia-induced C6 glial cell death. Methods : The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MMT) assay and cell morphological changes were analysed with microscope after staining with crystal violet (CV). Reactive oxygen species (ROS) formation was assessed by flow cytometer after staining with 2'7'-dichlorofluorescein diacetate (DCF-DA). We also analyzed expression of hypoxia-inducible factor-1 alpha (HIF-$1{\alpha}$) and p53, processing of procaspase-3 and procyclic acidic repetitive protein (PARP) by western blot method. Results : We estimated the elevated cell viability by UGS extract on $CoCl_2$-induced C6 glial cells. UGS attenuated $CoCl_2$-induced ROS formation in C6 glial cells and also showed a protective activity compared to antioxidants and exhibited abrogation of LDH-released by $CoCl_2$. UGS suppressed the typical apoptotic cell death markers, caspase-3 and PARP activation. UGS inhibited $CoCl_2$-induced HIF-1${\alpha}$ expression which is known as a major regulator for hypoxia-induced cell death, and suppressed p53 expression. Conclusions : These results suggest that UGS extract contains protective constituents for hypoxia-induced C6 glial cell death.

The MEK Inhibitor, PD98059 Blocks the Transactivation, but not the Stabilization or DNA Binding Ability, of Hypoxia-Inducible Factor-1$\alpha$

  • Hur, Eun-Seon;Chang, Keun-Young;Lee, Eun-Jung;Lee, Seung-Ki;Park, Hyun-Sung
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.41-83
    • /
    • 2001
  • Under low oxygen tension, cells increase the transcription of specific genes that are involved in angiogenesis, erythropoiesis and glycolysis. Hypoxia-induced gene expression primarily depends on the stabilization of the subunit of Hypoxia-Inducible Factor-1 (HIF-1), which acts as a heterodimeric transactivator.(omitted)

  • PDF

Effects of $CoCl_2$ on Osteogenic Differentiation of Human Mesenchymal Stem Cells

  • Moon, Yeon-Hee;Son, Jung-Wan;Moon, Jung-Sun;Kang, Jee-Hae;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • 제38권3호
    • /
    • pp.111-119
    • /
    • 2013
  • Objective. To investigate the effects of the hypoxia inducible factor-1 (HIF-1) activation-mimicking agent cobalt chloride ($CoCl_2$) on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and elucidate the underlying molecular mechanisms. Study design. The dose and exposure periods for $CoCl_2$ in hMSCs were optimized by cell viability assays. After confirmation of $CoCl_2$-induced HIF-$1{\alpha}$ and vascular endothelial growth factor expression in these cells by RT-PCR, the effects of temporary preconditioning with $CoCl_2$ on hMSC osteogenic differentiation were evaluated by RT-PCR analysis of osteogenic gene expression, an alkaline phosphatase (ALP) activity assay and by alizarin red S staining. Results. Variable $CoCl_2$ dosages (up to $500{\mu}M$) and exposure times (up to 7 days) on hMSC had little effect on hMSC survival. After $CoCl_2$ treatment of hMSCs at $100{\mu}M$ for 24 or 48 hours, followed by culture in osteogenic differentiating media, several osteogenic markers such as Runx-2, osteocalcin and osteopontin, bone sialoprotein mRNA expression level were found to be up-regulated. Moreover, ALP activity was increased in these treated cells in which an accelerated osteogenic capacity was also verified by alizarin red S staining. Conclusions. The osteogenic differentiation potential of hMSCs could be preserved and even enhanced by $CoCl_2$ treatment.

Neuroprotective Effect of Chronic Intracranial Toxoplasma gondii Infection in a Mouse Cerebral Ischemia Model

  • Lee, Seung Hak;Jung, Bong-Kwang;Song, Hyemi;Seo, Han Gil;Chai, Jong-Yil;Oh, Byung-Mo
    • Parasites, Hosts and Diseases
    • /
    • 제58권4호
    • /
    • pp.461-466
    • /
    • 2020
  • Toxoplasma gondii is an obligate intracellular protozoan parasite that can invade various organs in the host body, including the central nervous system. Chronic intracranial T. gondii is known to be associated with neuroprotection against neurodegenerative diseases through interaction with host brain cells in various ways. The present study investigated the neuroprotective effects of chronic T. gondii infection in mice with cerebral ischemia experimentally produced by middle cerebral artery occlusion (MCAO) surgery. The neurobehavioral effects of cerebral ischemia were assessed by measurement of Garcia score and Rotarod behavior tests. The volume of brain ischemia was measured by triphenyltetrazolium chloride staining. The expression levels of related genes and proteins were determined. After cerebral ischemia, corrected infarction volume was significantly reduced in T. gondii infected mice, and their neurobehavioral function was significantly better than that of the uninfection control group. Chronic T. gondii infection induced the expression of hypoxia-inducible factor 1-alpha (HIF-1α) in the brain before MCAO. T. gondii infection also increased the expression of vascular endothelial growth factor after the cerebral ischemia. It is suggested that chronic intracerebral infection of T. gondii may be a potential preconditioning strategy to reduce neural deficits associated with cerebral ischemia and induce brain ischemic tolerance through the regulation of HIF-1α expression.

Ginsengenin derivatives synthesized from 20(R)-panaxotriol: Synthesis, characterization, and antitumor activity targeting HIF-1 pathway

  • Guo, Hong-Yan;Xing, Yue;Sun, Yu-Qiao;Liu, Can;Xu, Qian;Shang, Fan-Fan;Zhang, Run-Hui;Jin, Xue-Jun;Chen, Fener;Lee, Jung Joon;Kang, Dongzhou;Shen, Qing-Kun;Quan, Zhe-Shan
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.738-749
    • /
    • 2022
  • Background: Ginseng possesses antitumor effects, and ginsenosides are considered to be one of its main active chemical components. Ginsenosides can further be hydrolyzed to generate secondary saponins, and 20(R)-panaxotriol is an important sapogenin of ginsenosides. We aimed to synthesize a new ginsengenin derivative from 20(R)-panaxotriol and investigate its antitumor activity in vivo and in vitro. Methods: Here, 20(R)-panaxotriol was selected as a precursor and was modified into its derivatives. The new products were characterized by 1H-NMR, 13C-NMR and HR-MS and evaluated by molecular docking, MTT, luciferase reporter assay, western blotting, immunofluorescent staining, colony formation assay, EdU labeling and immunofluorescence, apoptosis assay, cells migration assay, transwell assay and in vivo antitumor activity assay. Results: The derivative with the best antitumor activity was identified as 6,12-dihydroxy-4,4,8,10,14-pentamethyl-17-(2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl(tert-butoxycarbonyl)glycinate (A11). The focus of this research was on the antitumor activity of the derivatives. The efficacy of the derivative A11 (IC50 < 0.3 µM) was more than 100 times higher than that of 20(R)- panaxotriol (IC50 > 30 µM). In addition, A11 inhibited the protein expression and nuclear accumulation of the hypoxia-inducible factor HIF-1α in HeLa cells under hypoxic conditions in a dose-dependent manner. Moreover, A11 dose-dependently inhibited the proliferation, migration, and invasion of HeLa cells, while promoting their apoptosis. Notably, the inhibition by A11 was more significant than that by 20(R)-panaxotriol (p < 0.01) in vivo. Conclusion: To our knowledge, this is the first study to report the production of derivative A11 from 20(R)-panaxotriol and its superior antitumor activity compared to its precursor. Moreover, derivative A11 can be used to further study and develop novel antitumor drugs.

성향정기산이 흰쥐의 MCAO에 의한 국소뇌허혈에 미치는 영향 (Neuroprotective Effect of Sunghyangjungki-San on Focal Cerebral Ischemia Induced by MCAO in Rats)

  • 김효선;김연섭
    • 동의생리병리학회지
    • /
    • 제20권3호
    • /
    • pp.596-602
    • /
    • 2006
  • This study evaluated neuroprotective effect of Sunghyangjungki-San (SHS) on the focal cerebral ischemia. The rats were induced infarct in cerebral cortex and caudoputamen by using temporal occlussion of the middle cerebral artery (MCAO), then water extract of SHS was treated for MCAO rats. Neuroprotective effect was evaluated by neurological score, infarct sizes and total volume, positive neurons against Bax, Caspase-3, HSP-72, and $HIF-1{\alpha}$ in infarct area with immunohistochemistry. The results obtained were as follows: Treatment of SHS improved neurological score of MCAO rats, but there was not a statistical significance. Treatment of SHS reduced significantly infarct sizes in the brain sections of MCAO rats. Treatment of SHS reduced significantly total volume of infarct of MCAO rats. Treatment of SHS reduced significantly Bax positive neurons in penumbra of cerebral cortex of MCAO rats. Treatment of SHS reduced significantly Caspase-3 positive neurons in caudoputamen and penumbra of cerebral cortex of MCAO rats. Treatment of SHS reduced significantly HSP-72 positive neurons in penumbra of cerebral cortex of MCAO rats. Treatment of SHS reduced significantly $IF-1{\alpha}$ positive neurons in penumbra of cerebral cortex of MCAO rats.

Cobalt Chloride Induces Necroptosis in Human Colon Cancer HT-29 Cells

  • Wang, Hai-Yu;Zhang, Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2569-2574
    • /
    • 2015
  • Necroptosis, also known as "programmed necrosis", has emerged as a critical factor in a variety of pathological and physiological processes and is considered a cell type-specific tightly regulated process with mechanisms that may vary rather greatly due to the change of cell line. Here we used HT-29, a human colon cancer cell line, to establish a necroptosis model and elucidate associated mechanisms. We discovered that cobalt chloride, a reagent that could induce hypoxia-inducible $factor-1{\alpha}(HIF1{\alpha})$ expression and therefore mimic the hypoxic microenvironment of tumor tissue in some aspects induces necroptosis in HT-29 cells when caspase activity is compromised. On the other hand, apoptosis appears to be the predominant death form when caspases are functioning normally. HT-29 cells demonstrated significantly increased RIPK1, RIPK3 and MLKL expression in response to cobalt chloride plus z-VAD treatment, which was accompanied by drastically increased $IL1{\alpha}$ and IL6 expression, substantiating the notion that necrosis can induce profound immune reactions. The RIPK1 kinase inhibitor necrostatin-1 and the ROS scavenger NAC each could prevent necrosis in HT-29 cells and the efficiency was enhanced by combined treatment. Thus by building up a necroptosis model in human colon cancer cells, we uncovered that mechanically RIP kinases collaborate with ROS during necrosis promoted by cobalt chloride plus z-VAD, which leads to inflammation. Necroptosis may present a new target for therapeutic intervention in cancer cells that are resistant to apoptotic cell death.

Extracts from Rhizopus oryzae KSD-815 of Korean Traditional Nuruk Confer the Potential to Inhibit Hypertension, Platelet Aggregation, and Cancer Metastasis in vitro

  • Lee, Sang-Jin;Bae, Hyun-Jin;Ryu, Ji-Yeon;Lee, Dae-Young;Kim, Gye-Won;Baek, Na-Min;Kwon, Moo-Sik;Hong, Sung-Youl
    • Food Science and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1423-1429
    • /
    • 2009
  • Rhizopus oryzae KSD-815 was isolated from nuruk that has been used to make Korean traditional wines. This study was performed to investigate the effect of cultures of R. oryzae KSD-815 on cardiovascular disorders and cancer metastasis. Firstly, these cultures were sequentially fractionationed with n-hexane (TAHe), ethylacetate (TAE), n-butanol (TAB), and $H_2O$ (TAW). The TAE inhibited the activity of angiotensin-converting enzyme (ACE) and TAB suppressed platelet aggregation in vitro. TAE and TAB inhibited cell motility of human breast cancer cells. Furthermore, TAW interrupted the formation of neovasculature and tube-like structure, and down-regulated the expression of angiogenic factors, basic fibroblast growth factor (bFGF), tumor necrosis factor-$\alpha$ (TNF-$\alpha$), and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) in breast cancer cells. These results indicated that cultures of R. oryzae KSD-815 display the inhibitory activities on hypertension, platelet aggregation, and metastasis, and suggest that these cultures might be further probed for the purposes as therapeutic agents or dietary supplements.

Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-κB and ERK1/2 pathways in colon cancer

  • Kim, Eui Joo;Kwon, Kwang An;Lee, Young Eun;Kim, Ju Hyun;Kim, Se-Hee;Kim, Jung Ho
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.288-297
    • /
    • 2018
  • Background: The incidence of colorectal cancer (CRC) is increasing, with metastasis of newly diagnosed CRC reported in a large proportion of patients. However, the effect of Korean Red Ginseng extracts (KRGE) on epithelial to mesenchymal transition (EMT) in CRC is unknown. Therefore, we examined the mechanisms by which KRGE regulates EMT of CRC in hypoxic conditions. Methods: Human CRC cell lines HT29 and HCT116 were incubated under hypoxic (1% oxygen) and normoxic (21% oxygen) conditions. Western blot analysis and real-time PCR were used to evaluate the expression of EMT markers in the presence of KRGE. Furthermore, we performed scratched wound healing, transwell migration, and invasion assays to monitor whether KRGE affects migratory and invasive abilities of CRC cells under hypoxic conditions. Results: KRGE-treated HT29 and HCT116 cells displayed attenuated vascular endothelial growth factor (VEGF) mRNA levels and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) protein expression under hypoxic conditions. KRGE repressed Snail, Slug, and Twist mRNA expression and integrin ${\alpha}V{\beta}6$ protein levels. Furthermore, hypoxia-repressed E-cadherin was restored in KRGE-treated cells; KRGE blocked the invasion and migration of colon cancer cells by repressing $NF-{\kappa}B$ and ERK1/2 pathways in hypoxia. Conclusions: KRGE inhibits hypoxia-induced EMT by repressing $NF-{\kappa}B$ and ERK1/2 pathways in colon cancer cells.

Dichloroacetate의 p53 비의존적 경로를 통한 인간 역분화 갑상선 암세포주의 성장억제 효과 (Dichloroacetate Inhibits the Proliferation of a Human Anaplastic Thyroid Cancer Cell Line via a p53-independent Pathway)

  • 얌 바하더 케이씨;수닐 포우델;전언주;손호상;변승준;정남호
    • 생명과학회지
    • /
    • 제28권12호
    • /
    • pp.1469-1476
    • /
    • 2018
  • Warburg 효과의 발생은 고형암에서 화학적 항암제의 내성을 발생시킨다. 따라서 호기성 해당과정과 같은 에너지 대사과정은 암 치료의 중요한 표적으로 알려져 있다. Pyruvate dehydrogenase kinase (PDK) 활성 억제물질로 알려진 dichloroacetate (DCA)는 많은 암세포에서 포도당의 호기성 해당과정을 산화적인산화 과정으로 전환시킬 수 있음이 보고되었다. 이 연구는 치료가 매우 어렵다고 알려진 인간 역분화 갑상선 암세포주인 8505C의 성장에 미치는 DCA효과를 조사하였다. DCA는 정상 갑상선 세포주의 성장에는 영향을 주지 않은 반면 8505C 세포주의 성장을 특이적으로 저해하였다. DCA의 처리에 의해 8505C 세포주는 $HIF1{\alpha}$, PDK1, Bcl-2와 같은 항-세포자살 관련 단백질들의 발현이 감소하고, Bax와 p21과 같은 세포자살 유도 단백질과 세포주기 억제 단백질의 증가로 인하여 세포주기 정지와 세포자살 유도에 의해 성장이 억제되었다. 이런 세포의 변화는 DCA 처리에 의한 활성산소족의 생산이 증가하고, 포도당 대사가 호기성 해당과정에서 산화적인산화 과정으로 전환되었기 때문이란 것을 확인하였다. 흥미롭게도, DCA는 포도당 대사과정의 변화뿐만 아니라 sodium/iodine symporter (NIS)의 발현양도 증가시킨다는 것을 확인하였다. 이 연구의 결과로 PDK 활성 저해제는 치료하기 힘든 역분화 갑상선 암 치료제로 이용할 수 있고, 또한 역분화 갑상선 암에 대한 방사능 치료의 효능을 높일 수 있을 것으로 기대된다.