• 제목/요약/키워드: HGF-1 cells

검색결과 52건 처리시간 0.023초

혈관내피세포의 이동에 미치는 Hepatocyte Growth Factor의 영향 (Effect of Hepatocyte Growth Factor on the Migration of Human Umbilical Vein Endothelial Cells)

  • 오인숙;소상섭;김환규
    • KSBB Journal
    • /
    • 제18권6호
    • /
    • pp.485-489
    • /
    • 2003
  • HGF는 내피세포의 증식 및 이동을 일으키는 강력한 혈관 신생 유도인자 및 생존인자로서 작용한다고 알려져 있다. 본 연구에서는 HUVECs 세포를 이용하여 내피세포의 이동 및 단백질분해효소의 분비에 미치는 HGF의 효과를 확인하였다. 그 곁과, HGF 처리 (10ng/$m\ell$)에 의해 HUVECs 세포의 이동이 약 3.3배 촉진되어, HGF가 HUVECs 세포에서 강력한 이동 유도인자라는 사실을 확인하였다. 내피세포의 이동에 관여할 것이라 여겨지는 MMPs, TIMPs 및 플라스민의 분비에 미치는 HGF의 효과를 관찰한 결과, HGF에 의해 MMP-2 및 MMP-3의 분비양이 각각 3.3배와 6.1배씩 증가되었다. HGF에 의한 TIMPs 분비효과를 관찰한 결과, TIMP-1은 대조군에 비해 약 1.8배 분비가 증가되었으나, TIMP-2는 대조군에 비해 약 3.1배 분비가 억제되었다. 또한, 광범위 MMPs-억제제인 BB-94 (20ng/$m\ell$) 및 플라스민 억제제인 $\alpha$$_2$-antiplasmin (100mU)을 처리했을 때, HGF에 의해 유도된 혈관내피세포의 이동이 거의 완벽하게 억제되었다. 결론적으로, HGF는 HUVECs 세포에서 MMP-2, MMP-3, MMP-9, TIMP-1 및 플라스민의 분비 증가를 일으켰으며, HGF에 의해 분비가 증가 된 단백질분해효소에 의해 세포외기질 및 기저막 단백질로의 혈관내피세포의 이동이 촉진되고, 결과적으로 혈관신생을 유도할 것이라 사료된다.

Hepatocyte Growth Factor and Met: Molecular Dialogue for Tissue Organization and Repair

  • Matsumoto, Kunio;Nakamura, Toshikazu
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 1998
  • Hepatocyte growth factor (HGF), originally discovered and cloned as a powerful mitogen for hepatocytes, is a four kringle-containing growth factor which specifically binds to membrane-spanning tyrosine kinase, c-Met/HGF receptor. HGF has mitogenic, motogenic (enhancement of cell movement), morphogenic (e.g., induction of branching tubulogenesis), and anti-apoptotic activities for a wide variety of cells. During embryogenesis, HGF supports organogenesis and morphogenesis of various tissues, including liver, kidney, lung, gut, mammary gland, and tooth. In adult tissues HGF elicits an organotrophic function which supports regeneration of organs such as liver, kidney, lung, and vascular tissues. HGF is also a novel member of neurotrophic factor in nervous systems. Together with the preferential expression of HGF in mesenchymal or stromal cells, and c-Met/HGF receptor In epithelial or endothelial cells, the HGF-Met coupling seems to orchestrate dynamic morphogenic processes through epithelial-mesenchymal (or-stromal) interactions for organogenesis and organ regeneration. HGF or HGF gene may well become unique therapeutic tools for treatment of patients with various organ failure, through its actions to reconstruct organized tissue architectures. This review focuses on recently characterized biological and physiological functions integrated by HGF-Met coupling during organogenesis and organ regeneration.

  • PDF

Prevention of Diabetes Using Adenoviral Mediated Hepatocyte Growth Factor Gene Transfer in Mice

  • Lee, Hye-Jeong;Kim, Hyun-Jeong;Roh, Mee-Sook;Lee, Jae-Ik;Lee, Sung-Won;Jung, Dong-Sik;Kim, Duk-Kyu;Park, Mi-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권5호
    • /
    • pp.261-266
    • /
    • 2003
  • Type 1 diabetes is an organ-specific autoimmune disease caused by the cytotoxic T cells-mediated destruction of the insulin-producing beta cells in the Langerhans pancreatic islets. Hepatocyte growth factor (HGF) is a potent mitogen and a promoter of proliferation of insulin producing beta cells of pancreatic islets. To study the role of HGF via viral vector in the development of streptozotocin (STZ)-induced diabetes in mice, we have developed an adenoviral vector genetically engineered to carry the gene for human HGF (hHGF) and evaluate the change of blood glucose, insulin level, and insulin-secreting beta cells of pancreatic islets. We demonstrate that the treatment with hHGF gene prevented the development of STZ-induced diabetes and increased serum insulin level to above normal range. Furthermore, it preserved pancreatic beta cells from destruction. These in vivo results may support previous findings that HGF is insulinotropic agent for beta cells and HGF treatment renders the cells to be resistant to the development of diabetes from STZ administration. We suggest that an adenoviral mediated hHGF gene therapy is a good candidate for the prevention and treatment of type 1 diabetes.

Hepatocyte Growth Factor is the Key Cytokine in Stimulating Potential Stem Cells in the Cord Blood into Hepatic Lineage Cells

  • Ryu, Kyung-Ha;Cho, Su-Jin;Woo, So-Youn;Seoh, Ju-Young;Jung, Yun-Jae;Han, Ho-Seong
    • IMMUNE NETWORK
    • /
    • 제7권3호
    • /
    • pp.117-123
    • /
    • 2007
  • Background: This study was designed to investigate the role of the hepatocyte growth factor (HGF) with regards to differentiation of somatic stem cells originating from the human umbilical cord blood (UCB) into hepatic lineage cells in vitro culture system. Methods: Mononuclear cells from UCB were cultured with and without HGF based on the fibroblast growth factor (FGF)-1, FGF-2, and stem cell factor. The cultured cells were confirmed by immunofluorescent staining analysis with albumin (ALB), cytokeratin-19 (CK-19), and proliferating cell nuclear antigen (PCNA) MoAb. ALB and CK-18 mRNA were also evaluated by reverse transcription-polymerase chain reaction. In order to observe changes in proliferating capacity with respect to the cultured period, CFSE with affinity to proliferating cells were tagged and later underwent flow cytometry. Results: In the HGF-treated group, cultured cells had a large oval shaped appearance with adherent, but easily detachable characteristics. In the HGF-non treated group, these cells were spindle-shaped with strong adherent characteristics. Expressions of ALB and CK-19 were evident in HGF-treated group compared to non-expression of those in to HGF-non treated group. Dual immunostaining analysis of the ALB producing cells showed presence of PCNA in their nuclei, and ALB and CK-18 mRNA were detected on the 21st day of cultured cells in the HGF-treated group. Conclusion: Our findings suggest that HGF has a pivotal role in differentiating somatic stem cells of human UCB into hepatic lineage cells in vitro.

U-251-MG 세포에서 PSA 경로에 작용하는 Hepatocyte Growth Factor의 효과 (Effects of Hepatocyte Growth Factor on the PSA Signaling Pathway of U-251-MG Cells)

  • 김환규
    • KSBB Journal
    • /
    • 제24권5호
    • /
    • pp.425-431
    • /
    • 2009
  • 본 연구에서는 U-251-MG 세포를 이용하여 증식, 이동, 침윤 및 단백질분해효소의 분비에 미치는 PSA와 HGF의 효과를 확인하였다. 그 결과, PSA siRNA에 의해 U-251-MG 세포의 증식은 약 37% 억제되었으나, HGF 처리 (10 ng/mL)에 의해 증식이 약 1.4배 증가되었다. PSA siRNA에 의한 U-251-MG 세포의 이동은 약 60%가 억제되었으나, HGF 처리에 의해 이동이 약 1.3배 증가되었다. 또한, PSA siRNA에 의해 U-251-MG 세포의 침윤이 약 67% 억제되었으나 HGF 처리에 의해 세포의 침윤이 약 4.3배 증가되었다. PSA siRNA처리에 의해 MMP-2의 분비는 약 25%, MMP-9의 분비는 약 20% 억제되었으며, HGF에 의해 PSA siRNA에 의해 억제된 MMP-2 및 MMP-9의 분비가 약 2.8배 및 3.5배 증가되었다. HGF 처리에 의해 플라스민의 분비량은 약 14배 증가되었고, PSA를 억제한 U-251-MG 세포에 HGF를 처리한 결과, 플라스민의 분비가 약 1.6배 증가하였다. 또한, PSA siRNA에 의해 MMP-2의 발현은 유의할만한 변화가 없었으나, MMP-9의 발현은 약 85% 억제되었다. PSA를 억제시킨 U-251-MG 세포에 HGF를 처리한 결과, MMP-2의 발현은 약 5.7배, MMP-9의 발현은 약 6.3배 증가되었다. 한편, MMPs의 광범위 억제제인 BB-94 처리에 의해 U-251-MG 세포의 증식, 이동 및 침윤이 유의할만하게 억제 된 것은 MMP-2 및 MMP-9이 U-251-MG 세포의 증식, 이동 및 침윤에 관여할 것임을 시사해준다.

Hepatocyte Growth Factor-mediated Regulation of OCT4 in human Mesenchymal Stem Cells

  • Ji-Eun Oh;Jung-Yoon Yoo;Eun Ju Lee;Sung Ryul Yu
    • 대한의생명과학회지
    • /
    • 제30권3호
    • /
    • pp.123-130
    • /
    • 2024
  • Mesenchymal stem cells (MSCs) hold great promise as a source of stem cells for therapy, but several limitations remain. We previously proposed that human embryonic stem cell-derived MSCs (hE-MSCs) expressing higher hepatocyte growth factor (HGF) levels were better alternatives, exhibiting greater expandability in vitro and greater therapeutic capacity in vivo. In this study, we aimed to examine the regulation of OCT4 expression in stem cells and to elucidate its underlying mechanism of transcriptional regulation of OCT4. We detected higher expression of OCT4, a stemness-associated gene in hE-MSCs than in human bone marrow-derived MSCs (hBM-MSCs). To determine the underlying regulatory mechanism of OCT4 expression in human MSCs (hMSCs), ELISA was performed using cell culture supernatants of hMSCs. Unlike fibroblast growth factor 2 or vascular endothelial growth factor, HGF was strongly expressed in hE-MSCs, also HGF treatment significantly increased OCT4 expression in hBM-MSC. Moreover, senescence-associated heterochromatin foci were decreased in HGF-treated hBM-MSCs compared with those in the HGF non-treated group. HGF increased Rb phosphorylation, and we confirmed the increased binding of E2F1 to the OCT4 promoter region at -233 from the transcription start point in the presence of HGF. Taken together, these results suggest that HGF-mediated regulation of OCT4 via E2F1 can help enhance the lifespan of hBM-MSCs during in vitro expansion.

인체의 암세포주와 치은섬유모세포주에서 방사선조사가 apoptosis 유발에 미치는 영향에 관한 연구 (IRRADIATION EFFECT ON THE APOPTOSIS INDUCTION IN THE HUMAN CANCER CELL LINES AND THE GINGIVAL FIBROBLAST)

  • 박무순;이삼선;최순철;박태원;유동수
    • 치과방사선
    • /
    • 제28권1호
    • /
    • pp.59-71
    • /
    • 1998
  • The radiation-induced apoptosis was studied for two human cancer cell lines (KB cells, RPMI 2650 cells) and the human gingival fibroblast cell line (HGF-1 cells). The single irradiation of 2, 10, 20Gy was done with 241.5 cGylmin dose rate using the /sup 137/Cs MK cell irradiator. The cells were stained with propidium iodide and examined under the fluoro-microscope and assayed with the flow cytometry a day after irradiation. Also, the LDH assay was done to determine the amount of necrotic cells. The obtained results were as follows: 1. On the fluoro-microscope, many fragmented nuclei were detected in the KB, RPMI 2650, and HGF-1 cells after irradiation. 2. On the DNA content histogram obtained from the flow cytometry, the percentages of the pre-Gl peak of the control and 2, 10 and 20Gy irradiation group were 4.5, 55.0, 52.3, and 66.6% on KB cells, 2.7, 3.3, 31.8, and 32.6% on RPMI 2650 cells and 2.8, 21.8, 30.4, and 40.2% on HGF-1 cells respectively. 3. The number of Gl-stage cells was abruptly decreased after 2Gy irradiation on KB cells and 10Gy irradiation on RPMI 2650 cells, But there was a slight decrease without regard to irradiation dose on HGF-1 cells. 4. There was no significantly different absorbance in extracellular LDH assay along the experimental cell lines.

  • PDF

인간자궁내막의 탈락막화 (Decudualization)에 있어서 TGF-$\beta$ (Transforming Growth Factor-$\beta$)의 역할 (Transforming Growth Factor-$\beta$ is a Possible Paracrine Mediator in the Human Endometrial Decidualization)

  • 박동욱;최동순;김미란;황경주;조미영;안성희;민철기;유희석
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제30권1호
    • /
    • pp.65-75
    • /
    • 2003
  • Objectives: To investigate the role of TGF (Transforming growth factor-$\beta$) involved in the paracrinic communication during decidualization between UEC (uterine epithelial cells) and USC (uterine stromal cells), we have employed a co-culture system composed of human endometrial epithelial and stromal cells in defined hormonal conditions. Design: In the co-culture, endometrial epithelial cells cultured in the matrigel-coated cell culture insert are seeded on top of the endometrial stromal cells cultured within a collagen gel. The co-culture was maintained for 48 hours under the following hormonal conditions: progesterone dominant condition (100 nM P4 and 1 nM E2) or estrogen-dominant condition (100 nM E2 and 1 nM P4). 10 ng/ ml HGF and/or 10 ng/ml TGF-$\beta$1 are added. Methods: RT-PCR is utilized to detect mRNAs quantitatively. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining are utilized to detect proteins in the tissue. Results: Prolactin mRNA is expressed in the co-cultured stromal cells under the progesterone dominant condition. TGF-$\beta$1 and its receptors are expressed in both the co-cultured epithelial and stromal cells irrespective of the steroid present, which is in contrast with no or negligible expression of TGF-$\beta$1 or its receptor in cells separately cultured. Both estrogen and progesterone significantly elevate the concentration of hepatocyte growth factor (HGF) in the conditioned medium of the co-culture with the value of 4, 325 pg/ml in E2-dominant and 2, 000 pg/ml in P4-dominant condition compare to 150 pg/ml in no hormone. In separately cultured stromal cells, administration of HGF induces the expression of TGF receptor 1 in both hormonal conditions, but induction of TGF receptor 2 is only manifest in the P4-dominant condition. Administration of TGF-$\beta$ and HGF directly induce the decidualization marker prolactin mRNA in separately cultured stromal cells. Conclusion: It is likely that steroid hormones induces prolactin mRNA indirectly by promoting the cell to cell communication between the stromal and the epithelial cells. TGF-$\beta$ and HGF are two possible paracrine mediators in the human endometrial decidualization.

Xenopus laevis 초기 배의 동물극 분리배양에서 bFGF와 HGF 혼합처리에 의한 기관유도 (Organ Induction by Combined Dose of bFGF and HGF in Animal Cap Assay of Early Xenopus laevis Embryos.)

  • 진정효;윤춘식;이호선;박용욱;정선우
    • 생명과학회지
    • /
    • 제14권3호
    • /
    • pp.375-384
    • /
    • 2004
  • FGFs는 Xenopus의 초기 배발생에서 중배엽 형성, 전후축패턴형성, scatter factor로서 낭배기의 기관형성에 관여하는 등 다양한 기능을 가지고 있는 것으로 알려져 있다 그 중 bFGF는 배양 분리편으로부터 다양한 기관을 유도해낼 수 있으며 그 효과는 처리시간 및 농도 의존적이라고 알려져 왔다. 본 연구는 Xenopus의 예정표피역을 분리하여 bFGF와 HGF을 단독 및 복합처리 하였을 때 기관분화 및 유도효과를 검토하기 위하여 실시하였다. 단독처리 및 복합 처리된 배양액에 동물극 분리편을 정상배가 st. 43에 이를 때까지 2$0^{\circ}C$에서 3일간 배양하여 조직학적 및 면역조직화학적 방법으로 조직의 분화양상을 확인하였다. 성장인자는 bFGF를 0, 0.5, 1. 10. 50 ng/ml의 농도와 HGF를 0, 1, 10, 50, 100ng/ml의 농도로 조합하여 처리한 결과 bFGF 단독처리 때보다 HGF와의 혼합처리에서 기관분화율의 상승효과가 관찰되었다. 분화된 기관은 1 ng/ml의 bFGF 와 10ng/ml의 HGF, 10ng/ml의 bFGF와 1ng/ml의 HGF의 농도에서 매우 다양한 것으로 나타났다. 눈은 1과 10ng/ml의 bFGF ,그리고 1과 10 ng/ml의 HGF 농도조합에서 높은 비율로 분화하였다. 또한 분리편 배양에 의해 유도된 눈과 정상 배의 눈에서 RPE65를 인식하는 단일클론 항체 40All, 25F5를 사용하여 AP 반응이 강하게 나타나 눈의 유도를 확인할 수 있었다.

Constituents Released from Streptococcus mutans Attenuate Arecoline-mediated Cytotoxicity in HGF Cells by Altering Intracellular $Ca^{2+}$ Signaling

  • Erkhembaatar, Munkhsoyol;Oh, Hyuncheol;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • 제39권1호
    • /
    • pp.41-47
    • /
    • 2014
  • Streptococcus mutans (S. mutans) is a facultative anaerobic bacterium mainly found in the oral cavity and is known to contribute to tooth decay and gingivitis. Recent studies on intestinal microbiota have revealed that microorganisms forming a biofilm play important roles in maintaining tissue homeostasis through their own metabolism. However, the physiological roles of oral microorganisms such as S. mutans are still unclear. In our current study, we identified that constituents released from S. mutans (CR) reduce arecoline-mediated cytotoxicity without producing toxic effects themselves. Arecoline, as a major alkaloid of areca nut, is known to mediate cytotoxicity on oral epithelial cells and induces a sustained intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) increase that is cytotoxic. The exposure of human gingival fibroblast (HGF) cells to CR not only inhibited the sustained $[Ca^{2+}]_i$ increase but also the initial $[Ca^{2+}]_i$ elevation. In contrast, CR had no effects on the gene regulation mediated by arecoline. These results demonstrate that S. mutans has physiological role in reducing cytotoxicity in HGF cells and may be considered a novel pharmaceutical candidate.