• Title/Summary/Keyword: HG-AAS

Search Result 43, Processing Time 0.026 seconds

Total Mercury Content of Restaurant Meals in Seoul Area (대중음식중의 총 수은 함량 측정)

  • 김명희;정남준;김정헌;박성배
    • Journal of Food Hygiene and Safety
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 1989
  • This study was performed to investigate the mercury concentration of restaurant meals and to estimate the total dietary intake of mercury. Experimental subjects were 66 cases in 11 kinds of common restaurant meals collected from the Seoul area. Total mercury was determined by Hg-analyzer and two kinds of atomic absorption spectrophotometer (AAS). The results were as follows: 1. Mean value of mercury contents in fluid of meals was about 0.002 ppm and there was no significant difference between the two methods. 2. Mercury concentration of residue by AAS was significantly higher than that by Hg-analyzer. The mean values of mercury concentration were 2.423 ppm, 10.229 ppm and 11.655 ppm by Hg-analyzer, AAS-PE and AAS-Hi, respectively. 3. Dietary intake of mercury from the meals was estimated $7.806\;\mu\textrm{g}/day$ by Hg-analyzer and 31.290, $35.349\;\mu\textrm{g}/day$ by two kinds of AAS. The values were lower than the FAO/WHO limit, $42.9\;\mu\textrm{g}/day$.

  • PDF

Comparisons of Urinary Arsenic Analysis by Pre-reductant for Preconditioning via the FI-HG-AAS Method (FI-HG-AAS를 이용한 전처리 과정에서 사용되는 예비환원제의 종류에 따른 요중 비소 분석결과 비교)

  • Choi, Seung-Hyun;Choi, Jae Wook;Cho, YongMin;Bae, Munjoo
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.289-298
    • /
    • 2015
  • Objectives: The method of analyzing urinary arsenic by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) is generally used because it shows relatively greater sensitivity, low detection limits, low blocking action, and is simple to operate. In this study, the results of analysis according to three pre-reductants commonly used in the FI-HG-AAS method were compared with each other. Methods: To analyze urinary arsenic, nineteen urine samples were collected from adults aged 43-79 years old without occupational arsenic exposure. Analysis equipment was FI-HG-AAS (AAnalyst 800/FIAS 400, Perkin- Elmer Inc., USA). The three pre-reductants were potassium iodide (KI/AA), C3H7NO2S (L-cysteine), and a mixture of KI/AA and L-cysteine (KI/AA&L-cysteine). Results: In the results of the analysis, the recovery rate of the method using KI/AA was 82.3%, 95.7% for Lcysteine, and 123.5% for KI/AA and L-cysteine combined. When compared with the results by use of high performance liquid chromatography inductively-coupled plasma mass spectrometry (HPLC-ICP-MS), the method using L-cysteine was the closest to those using HPLC-ICP-MS ($98.57{\mu}g/L$ for HPLC-ICP-MS; $74.96{\mu}g/L$ for L-cysteine; $69.23{\mu}g/L$ for KI/AA and L-cysteine; $13.06{\mu}g/L$ for KI/AA) and were significantly correlated (R2=0.882). In addition, they showed the lowest coefficient of variation in the results between two laboratories that applied the same method. Conclusion: The efficiency of hydride generation is considered highly important to the analysis of urinary arsenic via FI-HG-AAS. This study suggests that using L-cysteine as a pre-reductant may be suitable and the most rational among the FI-Hg-AAS methods using pre-reductants.

Determination of Selenium and Tellurium by HG-AAS in Foods

  • Cha, Ki-Won;Park, Sang-Ho;Park, Kwang-Won
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.419-425
    • /
    • 1995
  • A method has been investigated for the determination of selenium and tellurium in Ginseng, Ganoderma and Garlic using hydride generation atomic absorption spectrometry(HG-AAS). The concentration effects of hydrochloric acid and sodium tetrahydroborate on the hydride generation for the determination of selenium and tellurium were investigated. The method of sample decomposition was also investigated using various mineral acids, such as nitric, perchloric and sulfuric acid in the closed system, and foreign ion effects containing in the samples were studied. The calibration curves of selenium and tellurium were obtained in the range of 0~40 ppb. The detection limits(S/N=2) of selenium and tellurium are 0.1 and 0.2 ppb. Analytical data of selenium and tellurium in Garlic, Ganoderma and Ginseng are 289, 296 and 198 ng/g for selenium and 146, 127 and 110 ng/g for tellurium, respectively.

  • PDF

Determination of Selenium in Foods by HG-AAS (HG-AAS에 의한 식품 중의 셀렌의 정량에 대한 연구)

  • Ki-Won Cha;Sang-Ho Park;Jae-Sung Choi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.12
    • /
    • pp.891-897
    • /
    • 1994
  • A method has been investigated for the determination of Selenium in Ginseng radix, Ganoderma Lucidum and Garlic using hydride generation atomic absorption spectrometry (HG-AAS). The effects of several acids and sodium tetrahydroborate concentration and their flow rate on the determination of Selenium for the hydride generation were investigated. The method of sample decomposition was also investigated using various mineral acids, such as nitric, perchloric and sulfuric acid in the closed system and foreign ion effects were studied. In the optimum conditions, we obtained calibration curve in the range 0-40 ppb. The analytical data of Garlic, Ganoderma Lucidum and Ginseng radix are 289, 296, 198 ppb, respectively.

  • PDF

The Comparison Study in the Extraction of Inorganic Priority Pollutants from Solid Wastes (고체 폐기물 시료 중의 무기 Priority Pollutants 추출법 비교 연구)

  • Ahn, Tae-Ho;Lee, Huk-Hee;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.395-402
    • /
    • 1997
  • The comparison study between EPA method 3050 and the test method offered by Ministry of Environment in Korea was performed to investigate a matrix effect on extraction. In this study, 12 inorganic priority pollutants(Cd, Cr, Cu, Pb, Ni, Zn, As, Sb, Se, Hg, Be, Tl) were spiked to the sludges and estuary sediment samples. The extracts were analyzed by AAS, HG-AAS, and ICP/MS. Results were discussed in terms of recoveries, relative standard deviations, and the method detection limits. Mean recovery of the elements except As, Sb, and Se was 93% when the procedure of EPA method was applied. The Korean extraction method, however. showed a significant matrix effect to give very poor recoveries.

  • PDF

Development and Validation of Reference Material for Proficiency Testing of Blood Heavy Metals in Environmental Biomonitoring (환경 바이오모니터링에서의 혈중 중금속 분석 숙련도 시험을 위한 표준물질 제조 및 적용성 평가)

  • Im, Hosub;Yang, Minho;Oh, Selim;Kim, Soyoung;Jung, Hojun;Cho, Yong Min;Lee, Jung Sub;Kim, Hyun Jeong;Lee, Chae Kwan;Moon, Chan-Seok;Lee, Jong-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.450-464
    • /
    • 2016
  • Objectives: This study developed and validated reference materials (RMs) to analyze metal compounds in blood. Methods: We referred to KoNEHS (Korea National Environmental Health Survey) to estimate concentrations of blood metals (cadmium, Cd; lead, Pb; mercury, Hg) and applied analytical methods (inductively coupled plasma - mass spectroscopy, ICP-MS, for Cd and Pb; graphite furnace - atomic absorption spectrometry, GF-AAS, for Cd and Pb; and direct mercury analyzer, DMA, for Hg). Homogeneity and stability tests were carried out. In addition, certified values and uncertainties of RMs were calculated through internal and external experiments. All RMs were developed and assessed in various forms according to element, analytical method, and two types of concentration levels high concentration for occupational exposure and low concentration for environmental exposure. Results: All samples showed acceptable homogeneity, except for low concentration of Cd in the GF-AAS method. Short- and long-term stabilities were satisfied by ANOVA testing. In the inter-laboratory comparison, robust medians were lower than the certified values of all RMs (robust median/reference value; $1.301/1.327{\mu}g/L$ for Cd, ICP-MS, low concentration; $3.152/3.388{\mu}g/L$ for Cd, ICP-MS, high concentration; $1.219/1.301{\mu}g/L$ for Cd, GF-AAS, low concentration; $3.074/3.321{\mu}g/L$ for Cd, GF-AAS, high concentration; $14.473/14.516{\mu}g/L$ for Pb, ICP-MS, low concentration; $50.069/50.114{\mu}g/L$ for Pb, ICP-MS, high concentration; $12.881/14.147{\mu}g/L$ for Pb, GF-AAS, low concentration; $47.015/47.591{\mu}g/L$ for Pb, GF-AAS, high concentration; $4.059/4.218{\mu}g/L$ for Hg, DMA, low concentration; $11.474/11.181{\mu}g/L$ for Hg, DMA, high concentration). Conclusion: This study demonstrates procedures for developing and validating RMs for biomonitoring in the field of the environmental health.

Improvement of analytical methods for arsenic in soil using ICP-AES (ICP-AES를 이용한 토양 시료 중 비소 분석 방법 개선)

  • Lee, Hong-gil;Kim, Ji In;Kim, Rog-young;Ko, Hyungwook;Kim, Tae Seung;Yoon, Jeong Ki
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.409-416
    • /
    • 2015
  • ICP-AES has been used in many laboratories due to the advantages of wide calibration range and multi-element analysis, but it may give erroneous results and suffer from spectral interference due to the large number of emission lines associated with each element. In this study, certified reference materials (CRMs) and field samples were analyzed by ICP-AES and HG-AAS according to the official Korean testing method for soil pollution to investigate analytical problems. The applicability of HG-ICP-AES was also tested as an alternative method. HG-AAS showed good accuracies (90.8~106.3%) in all CRMs, while ICP-AES deviated from the desired range in CRMs with low arsenic and high Fe/Al. The accuracy in CRM030 was estimated as below 39% at the wavelength of 193.696 nm by ICP-AES. Significant partial overlaps and sloping background interferences were observed near to 193.696 nm with the presence of 50 mg/L Fe and Al. Most CRMs were quantified with few or no interferences of Fe and Al at 188.980 nm. ICP-AES properly assessed low and high level arsenic for field samples, at 188.980 nm and 193.696 nm, respectively. The importance of the choice of measurement wavelengths corresponding to relative arsenic level should be noted. Because interferences were affected by the sample matrix, operation conditions and instrument figures, the analysts were required to consider spectral interferences and compare the analytical performance of the recommended wavelengths. HG-ICP-AES was evaluated as a suitable alternative method for ICP-AES due to improvement of the detection limit, wide calibration ranges, and reduced spectral interferences by HG.

Matrix effect on the Determination of Inorganic Priority Pollutants in Sludges (오니 시료중의 무기 Priority Pollutants의 분석 과정에 미치는 매질의 영향)

  • Lee, Huk-Hee;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.297-304
    • /
    • 1998
  • The three analysis methods, EPA method 3050, the method offered by Ministry of Environment in Korea, and modified method corrected in this laboratory, were studied to investigate the effect of matrix on the analysis of inorganic priority pollutants. 7 inorganic priority pollutants(Ni, Cr, Cu, Zn, Pb, Cd, Hg) were spiked to the plating, leather, paper, electric, and dye sludges. Mean recovery of the elements except Hg was 95.5% when the procedure of EPA method was applied. However, recovery by the two other extraction methods showed 11.1% and 27.7%, respectively. Digestions were done by MDS (microwave digestion system) and $HNO_3+HClO_4$ methods. To study organic and inorganic matrix effect, samples were made by adding triethanol amine as a organic matrix and $FeCl_3{\cdot}6H_2O$+$AlCl_3{\cdot}6H_2O$ as a inorganic matrix, respectively. The extracts were analyzed by AAS and HG-AAS. Mean recovery of the elements by the $HNO_3+HClO_4$ procedure, except Hg, gave better result than that of the MDS method. Mean recovery of elements was decreased when organic and inorganic matrices were added in the sludge samples. The procedure of MDS and $HNO_3+HClO_4$ digestion gave higher recoveries than that of direct analysis. In general, the results of the studies showed a significant matrix effect on the inorganic priority pollutants analysis in sludges.

  • PDF

Analysis of selenium in oil refinery wastewater by hydride generation atomic absorption spectrometry (Hydride Generation Atomic Absorption Spectrometry를 이용한 석유정제폐수중의 selenium 분석)

  • Cheon, Mi-Hee;Kim, Chul;Lee, Hyun-Joo;Kang, Lim-Seok
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.399-406
    • /
    • 2003
  • This study was conducted to find out the analysis condition of selenium(Se) in oil refinery wastewater with a high concentration of Se using the atomic absorption spectrometry with hydride generation system (HG-AAS). From various experiments that reduced Se(VI) to Se(IV), the optimum pretreatment condition was determined to be a sample volume of 10 mL, HCl 10 mL, with a 30 min heating time in a water bath. In oil refinery wastewater, as the concentration of organics and constitution became higher, the recovery rates of Se decreased. Therefore, three acid digestion methods ($HNO_3/HClO_4$ digestion, $KMnO_4$ digestion, and microwave acid digestion) were tested on the recovery rates of Se in reference to the digestion of organics, petroleum and oxidation from organic Se(org.), Se(IV) to Se(VI). The experiment results showed that the average recovery rate of Se was the highest in microwave acid digestion, although all of the digestions were more than 90%. In consequence, the pretreatment procedure of microwave digestion followed by HCl addition was the most suitable for selenium analysis in oil refinery wastewater by using HG-AAS.

A Study on the Optimal Analytical Method for the Determination of Urinary Arsenic by Hydride Generation-Atomic Absorption Spectrometry (HG-AAS법에 의한 요중 비소의 최적 분석법에 관한 연구)

  • Lee, Jong-Wha;Lee, Ui-Seon;Hong, Sung-Chul;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.402-410
    • /
    • 2009
  • This study was carried out to examine the optimal analytical method for determination of urinary toxic arsenic (inorganic arsenic and its metabolites) by HG-AAS (hydride generation-atomic absorption spectrometry). In the analysis of SRMs (standard reference materials), method E (addition of 0.4% L-cysteine to pre-reductant and use 0.04M HCl as carrier acid) showed the most accurate results compared with the reference values. In the analysis of 30 urinary samples, analytical results were significantly different depend on the component of pre-reductant and the concentration of carrier acid. When the concentration of carrier acid was higher, the analytical result was lower. The recovery rates of MMA (monomethylarsonic acid) and DMA (dimethylarsenic acid) were varied by the concentration of pre-treatment acid and carrier acid and hydride generation reagents. When the concentration of carrier acid was 1.62 M (5% HCl), the recovery rates of DMA was 1%. The recovery rates of MMA and DMA in method E (=V) were 102% and 100%, respectively. The results of this study suggest that the component and concentration of pre-reductant and carrier acid must be carefully adjusted in the analysis of urinary arsenic, and method E is recommendable as the most precise analytical method for determination of urinary toxic arsenic.