• Title/Summary/Keyword: HFC-134a Refrigerant

Search Result 67, Processing Time 0.026 seconds

Condensation Heat Transfer for Pure HFC Refrigerants and a Ternary Refrigerant Mixture Inside a Horizontal Tube (HFC 순수냉매 및 3성분 혼합냉매의 수평관내 응축열전달)

  • Oh, Jong-Taek;Hihara, Eiji
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.233-240
    • /
    • 2000
  • An experimental study of condensation heat transfer was performed for pure refrigerants HFC32, HFCI25, and HFC134a, and a ternary refrigerant mixture of HFC32/125/134a (23/25/52wt%). The heat transfer coefficients were measured inside a horizontal smooth tube 5.8 mm I.D. and 8.0 m long. The refrigerant temperature at inlet was 40 $^{\circ}C$, and the mass flux was varied from 150 to 400 $kg/m^2s$. As for the pure refrigerants, the heat transfer coefficient of HFC32/125/l34a decreased as the quality decreased. In addition, the heat transfer coefficient of HFC32/l25/134a was about 20 % lower than HFC 134a at a low mass flux but showed no reduction at a high mass flux. The heat transfer coefficient of ternary refrigerant mixtures was 30% lower on the average than that of the pure refrigerant.

A Study on Characteristics of HFC-l34a and OS-l2a Refrigerant in Automobile Air-Conditioning System (자동차 에어컨용 냉매인 HFC-134a와 OS-12a의 성능 특성에 관한 연구)

  • 이종인;하옥남
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.136-142
    • /
    • 2002
  • HFC-134a is currently used as the refrigerant in automobile air-conditioner, replacing the ozone depleting refrigerant CFC-12. Although HFC-l34a has no ozone depletion potential, it has a relatively high global warming potential, approximately 1300 tins that of CO$_2$ over a 100 year time horizon. Therefore, HFC- l34a does not seem to be a perfect alternative refrigerant due to high GWP. For this reason, non-azeotrope refrigerant mixture have been proposed as a long-term and drop-in alternative to HFC-l34a in the automobile air-conditioning system which has variable operating conditions with changes in RPM and pressure ratio. In this study,OS-l2a of which thermodynamic properties are similar to those of HFC-l34a is selected among the mixed refrigerant. HFC-l34a and OS-l2a are examined experimently by the performance test in the same automobile air-conditioning system.

Heat and Mass Transfer Characteristics and Performance Evaluation of a Double-Tube Condenser for an Alternative Refrigerant (대체냉매의 2중관 응축기 열 및 물질전달과 성능평가)

  • 이상무;박병덕;소산번
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.468-476
    • /
    • 2002
  • This paper deals with heat and mass transfer characteristics and performance evaluation of a counter flow double-tube condenser for a multi-component refrigerant mixture. The local heat and mass transfer characteristics of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a are evaluated for a counter flow double-tube condenser cooled by water. Then, the local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, heat flux and condensation mass flux are obtained. The heat exchange performance for ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a on the total pressure drop and the heat transfer characteristics are also compared with those for R404A, R410A, R502, R22, R32, Rl23 and R134a.

Fugitive Emission Characteristics of HFC-134a from Waste Kimchi Refrigerator (폐김치냉장고에서의 HFC-134a 탈루배출 특성에 대한 연구)

  • Kim, Eui-Kun;Kim, Seungdo;Lee, Young Phyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • In 1995 Kimchi refrigerator was developed at first, and has used HFC-134a as refrigerant. Kimchi refrigerator has been made 1,044,694 on the basis of 2010, disposed about 160,000 per year. Although mobile air conditioning, commercial refrigerator, general refrigerator is regarded as a major source of HFC-134a, little information is available for its emission characteristics of HFC-134a. This paper addresses the fugitive emission factors of Kimchi refrigerator at use-phase and disposal-phase. The residual quantities of Korean-made fifty three waste Kimchi refrigerators were weighed using a commercial recover of refrigerants to determine the emission factors at the disposal-phase. On the other hand, the emission factors at use-phase were estimated from the residual quantities and operating times. The average residual rate of forty three scarp Kimchi refrigerators is determined to be $74.6{\pm}5.2%$. The emission factor at the use-phase is estimated to be $3.5{\pm}0.8%/yr$ as a result of using average age of 11.7 years and the average residual rate determined here. The emission factor at the disposal-phase is determined to be 31.3% after adopting 58% of the recycling rate of refrigerant reported by Recycling Center. We estimate 3.1 g/yr for the average emission quantity of HFC-134a per operating refrigerator, while 22.5 g for that per waste Kimchi refrigerator. Since the chemical compositions of refrigerant of waste Kimchi refrigerator were the same as those of new refrigerant, it is expected that the HFC-134a recovered from waste Kimchi refrigerator can be reused for refrigerant.

Estimation of Fugitive Emission Factors of HFC-134a from Scrap Cold Drinking Vending Machine at Use- and Disposal-Phase (음료용 폐자동판매기에서의 HFC-134a 사용 및 폐기단계 탈루배출계수 결정에 대한 연구)

  • Lee, Youngphyo;Kim, Eui-Kun;Kim, Seungdo;Byun, Seokho;Kim, Hyerim;Park, Junho;Lee, Dongwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.350-355
    • /
    • 2013
  • Little information is available for emission pathway even if HFC-134a that is known as one of the major greenhouse gases has been broadly used in Korea. This paper attempts to clarify the emission characteristics of HFC-134a used for refrigerant of cold drinking vending machines (CDVMs) at the use- and disposal-phase. We measured the residual amounts in the scrap CDVMs of 47 by applying commercial recover for refrigerant. The first-order kinetic model was introduced and the emission rate would be proportional to the remaining quantity of refrigerant. The emission factor at the use-phase was determined indirectly to be $6.9{\pm}0.7$ %/yr within a confidence interval of 95%, using information on residual amount and elapsed operation time at the disposal point. Correspondingly, the annual emission rate of HFC-134a per CDVM was determined to be 11.6 g. The average residual rate of HFC-134a in scrap CDVMs was assessed to be $62.5{\pm}2.2%$, leading to a potential emission amount of 144.8 g per scrap CDVM. The chemical compositions of refrigerants from scrap passenger vehicles are quite similar to those of new refrigerants, suggesting that the refrigerants from scrap passenger vehicles could be reused. During the recovering process of refrigerant, the recovered refrigerant was contaminated by compressor lubricant that accounted for about 30% in weight. It is necessary to separate the refrigerant from the recovered material contaminated by lubricant for recycling and reuse the refrigerant.

Study of Performance Optimization as an Alternative Refrigerant HFC152a in a Mobile Air Conditioning System (HFC152a 대체냉매를 이용한 자동차 냉방장치의 성능 최적화에 관한 연구)

  • Lee, Daewoong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.321-327
    • /
    • 2015
  • This study presents an HFC152a refrigerant air conditioner as an alternative to HFC134a, which is currently used in mobile air conditioning systems. Cool-down performance tests of an HFC152a air conditioning system were conducted and compared to a baseline HFC134a air conditioner. The experimental set-up consisted of a belt-driven compressor, a sub-cooled type condenser, an evaporator, and a block-type thermal expansion valve (TXV). A drop-in test was carried out on the mobile air conditioning system under various vehicle running speeds in a climate-controlled wind tunnel (CWT). Additionally, to optimize the HFC152a air conditioning system, the effects of the TXVs on the performance were studied. The results show that compared to the HFC134a air conditioning system, the refrigerant charge quantity was reduced by approximately 20%, the discharge pressure was reduced by about 350~430 kPa, and the air discharge temperature at vehicle running conditions was $0.5{\sim}1.5^{\circ}C$ lower. In addition, good compressor durability was expected due to the lower compression ratio.

A Study of Thermodynamic Cyclic Characteristics of HFC-134a Automotive Air-Conditioner System (HFC-134a 자동차용 공조시스템의 열역학적 사이클 특성에 관한 연구)

  • Lee, K.H.;Won, J.P.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.51-64
    • /
    • 1994
  • Analytical study on the thermodynamical cyclic behabiour and characteristics of HFC-l34a refrigerant for automotive air conditionser system for the replacement of existing CFC-12 has been carried out in this paper through development of system performance simulation program, expecially in the view point of system design considerations. The results indicate that HFC-l34a system will give a greater refrigerating capacity than CFC-12 if appropriate engineering measures such as proper codensers, flow controllers, etc., taken for certain operating conditions. The results, however, also show that the operating power for compression process increases over entire temperature range as a result of decreasing volumetric efficiency due to larger specific volume and increased discharging pressure. The present study results indicate that proper selection of condensing and evaporating temperature plus refrigerant control is very important performance factor to have better COP in the HFC-134a system design.

  • PDF

A Prediction Model for Condensation of Zeotropic Refrigerant Mixtures Inside a Horizontal Smooth Tube (수평평활관내의 비공비 혼합냉매의 응축에 대한 예측모델)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.262-270
    • /
    • 2001
  • This paper deals with a prediction method for the condensation of ternary refrigerant mixture inside a horizontal smooth tube. Based on some reliable assumptions, the governing equations for the local heat and mass transfer characteristics are derived, and the prediction for the condensation of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a, including R407C, is carried out. The local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, mass flux etc. are obtained for a constant wall temperature and a constant wall heat flux conditions, and the effects of the composition of HFC32/HFC125/HFC134a on heat transfer characteristics are examined. The prediction result is also compared with experimental data for condensation of ternary refrigerant mixtures. The predicted wall temperature distribution has a similar trend with experimental data but the predicted local heat transfer coefficients are 20-30% higher than the experimental data.

  • PDF

Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on a Horizontal Smooth Tube (수평관에서 이원 혼합냉매의 응축 열전달계수)

  • 김경기;서강태;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1049-1056
    • /
    • 2000
  • In this study, condensation heat transfer coefficients(HTCs) of 2 nonazeotropic refrigerant mixtures of HFC32/HFC134a and HFC134a/HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lower than the ideal values calculated by the mass fraction weighting of the pure components HTCs. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against the predicted ones by Colburn and Drew\`s film model and a good agreement was observed.

  • PDF

Performance Analysis of an Automotive Air Conditioning System Using HFC-134a as an Alternative Refrigerant (HFC-134a를 대체냉매로 사용한 자동차 냉방시스템의 성능해석)

  • Han, D.Y.;Cho, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.406-420
    • /
    • 1995
  • As concerns increase over the dangers of environmental destruction on a global scale, CFC regulations have finally been carried out and some CFC's are expected to be phased out by the end of 1995. The research for alternative refrigerants is very demanding. The major activities related to alternative refrigerants are focused on two different areas; one is the development of mixed refrigerants by using the existing refrigerants, and the other is the development of new HFC refrigerants. One of the most promising alternative refrigerant for CFC-12 is HFC-134a. HFC-134a has often been used as a replacement of CFC-12 for automotive air-conditioners. However, due to different thermodynamic properties of HFC-134a, performances of the replaced system are degraded compared with those of the CFC-12 system. Sometimes, the complete redesign of the system is required. In order to analyse and design the new system effectively, the developement of a system simulation program, in which HFC-134a can be selected as a refrigerant, is recommended. Therefore, the summary of this research is as follows : (1) The various thermodynamic properties of HFC-134a are ana lysed and programmed. (2) The model for serpentine heat exchanger is developed and programmed. (3) These subroutines are integrated to develop to develop an automotive air conditioning system simulation program which is verified by the test results. (4) The verified program is used to analyse the performance of a selected automotive air conditioning system.

  • PDF