• Title/Summary/Keyword: HEP

Search Result 1,407, Processing Time 0.04 seconds

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

Effect of Fermented Artemisiae Argyi Folium on Human Hepatoma Cell Line HepG2 Activity (발효 애엽(艾葉) 추출물이 인간 간암세포주 HepG2 활성에 미치는 영향)

  • Han, Hyo-Sang
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.107-113
    • /
    • 2013
  • Objective : The purpose of this study was to investigate the effect of fermented Artemisiae Argyi Folium(AAF) on some activities of human hepatoma cell, HepG2. Method : To investigate the effect of fermented Artemisiae Argyi Folium(AAF) activity on the human hepatoma cells, AAF extracts was fermented by Lactobacillus pentosus K34(AFL) and Sacchromyces cerevisiae STV89(AFS). And the effects of AFL or AFS on the activities of HepG2 cell, such as cell viability, nitric oxide(NO) production and reactive oxygen species(ROS) production, were tested. Result : Human Hepatoma Cells were incubated each for 3 hours and 24 hours. Human Hepatoma Cells treated with the extract was measured with MTT assay. Then AFL was found to be non-toxic at concentrations of 10 ug/mL(3h), 100 ug/mL(24h) or more. AFS was the same result at concentrations of more than 10 ug/mL. The extract increased ROS generation in Human Hepatoma Cells. AFL increased at concentrations of 100 ug/mL more (3h, also 10 ug/mL more) and 50 ug/mL(24h) and AFS increased both 50 ug/mL. In point of NO generation, AFL inhibited at concentrations of 10 ug/mL(3h) and 100 ug/mL(24h) more (3h, also 10 ug/mL more) and AFS also inhibited 50 ug/mL or more. Conclusion : AFL and AFS, obtained from Artemisiae Argyi Folium extracts by fermentation, reduced the NO production and increased ROS production in HepG2 cell, without cytotoxicity on HepG2 cell. The results suggested that AFL and AFS increased the immunological effects of Artemisiae Argyi Folium extracts.

Effects of black chokeberry on cholesterol metabolism in HepG2 cells (블랙 초크베리가 HepG2세포에서 콜레스테롤 대사에 미치는 효과)

  • Lee, Sang Gil;Kim, Bohkyung
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.398-402
    • /
    • 2022
  • Black chokeberry (Aronia melanocarpa), a rich source of polyphenols, exerts hypocholesterolemic effects. However, little is known about its effects on the regulation of the hepatic cholesterol metabolism and the underlying mechanisms. In the present study, the effects of polyphenol-rich black chokeberry extract (CBE) on hepatic cholesterol metabolism were investigated by measuring the expression of genes involved in the absorption, de novo synthesis, and efflux of cholesterol in HepG2 cells. There was a significant reduction in the expression levels of genes involved in cholesterol metabolism, the low-density lipoprotein receptor, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and sterol regulatory element-binding protein 2, in CBE-treated HepG2 cells. Meanwhile, CBE increased the expression levels of genes involved in cholesterol and bile acid efflux. The expression levels of mitochondrial fatty acid oxidation genes increased, whereas those of lipogenic genes decreased following CBE treatment. These data suggest that the consumption of black chokeberry may be beneficial for the prevention of hypercholesterolemia.

The Role of Autophagy on the Induction of Apoptosis by Water Extracts of Bigihwan, Daechilgitang and Mokwhyangbinranghwan in HepG2 Human Hepatocellular Carcinoma Cells (비기환, 대칠기탕 및 목향빈랑환 열수 추출물에 의한 인간 간세포암종 HepG2 세포의 세포사멸 유도에 미치는 자가포식의 역할)

  • Park, Sang Eun;Hong, Su Hyun;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.30 no.2
    • /
    • pp.67-83
    • /
    • 2022
  • Objectives : In this study, the anticancer activity of water extracts of three herbal medicine formulas, Bigihwan (BGH), Daechilgitang (DCGT) and Mokwhyangbinranghwan (MHBRH) listed in Donguibogam, was evaluated in HepG2 cells, a human hepatocellular carcinoma cell line. Methods : We investigated whether the cell viability of HepG2 cells was inhibited by the treatment of water extracts of three prescriptions, and whether their viability inhibitory effect was related to the induction of apoptosis. In addition, the role of autophagy on the induction of apoptosis by the treatment of these extracts was investigated. Results : The anticancer activity of the three water extracts on HepG2 cells was due to induction of apoptosis, not necrosis. Among them, BGH activated the caspase-dependent intrinsic apoptosis pathway associated with mitochondrial dysfunction. However, autophagy was induced more than 2-fold in DCGT-treated HepG2 cells, and the anticancer activity of DCGT was enhanced 1.5-fold in the presence of an autophagy inhibitor, but was attenuated in BGH and MHBRH-treated cells. Conclusion : The results of this study indicate that DCGT-induced autophagy was involved in the inhibition of apoptosis, whereas autophagy by BGH and MHBRH was related to induction of apoptosis.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.

Antioxidative and Hepatoprotective Effects of Injinho-Tang and Osumogwa-Tang (인진호탕(茵蔯蒿湯)과 오수목과탕(吳茱木瓜湯)의 항산화(抗酸化) 및 간세포(肝細胞) 보호효과(保護效果))

  • Lee, Sang-Hyun;Kim, Young-Bok
    • Herbal Formula Science
    • /
    • v.16 no.1
    • /
    • pp.117-130
    • /
    • 2008
  • Korean traditional medicine has been used for the treatment of the various diseases based on both oriental medicinal theory and clinical trials. Thus, the prescriptions of Korean traditional medicine would be useful for the development of new therapeutics. This research focuses on the fundamental study in Korean traditional prescriptions for the development of new hepatoprotective agents. We found two prescriptions. Injinho-Tang and Osumogwa-Tang, showed the significant DPPH free radical scavenging and hepatoprotective effect, respectively. It is well-known that free radical scavenging effect is related to the prevention of various pathological events including liver injury. This paper deals with hepatoprotective effects on tacrine-induced cytotoxicity in Hep G2 cells, free radicals scavenging on both DPPH and superoxide of above two prescriptions. Hot water extract of Injinho-Tang did not show the significant hepatoprotective effect on tacrine-induced cytotoxicity in Hep G2 cells, however, it shows the significant scavenging effects for both DPPH and superoxide radicals. On the other hand, all of the hot water extracts of constituent herbal drugs in Injinho-Tang exhibited the promising protective effect on tacrine-induced cytotoxicity in Hep G2 cells. Of these, water extract of Rhei Rhizoma showed the most prominent effect on tacrine-induced cytotoxicity in Hep G2 cells. Bioassay-guided fractionation of Rhei Rhizoma extract has furnished four compounds, and their chemical structures have been identified by comparison of their spectral data with those of literature as chrysophanol (1), emodin (2), 3,5-dihydroxy-4'- methoxystilbene (3), and rhapontigenin (4), respectively. Among the isolated compounds, compounds 2-4 revealed the significant hepatoprotective effect in vitro when their $EC_{50}$ values compare with that of silybin, as a positive control. It also exhibited that emodin possessed the most hepatoprotective effect among these active compounds. In case of Osumogwa-Tang, its hot water extract showed the moderate protective effect on tacrine-induced cytotoxicity in Hep G2 cells. Hot water extract of Chaenomelis Fructus, one of the constituent herbal drug of this prescription, exhibited the significant hepatoprotective effect with $EC_{50}$ value of $7.8{\pm}0.1\;{\mu}g/ml$, however, it showed strong cytotoxicity in Hep G2 cells above the concentration of $25\;{\mu}g/ml$. It was revealed that both hot water extract of Evodiae Fructus and its butanol soluble fraction showed the moderate hepatoprotective effect but concentration-dependent activity in Hep G2 assay system. Two quinolone alkaloids, evocarpine and dihydroevocarpine, also tested for their hepatoprotective effects on tacrine-induced cytotoxicity in Hep G2 cells, however, these two compounds derived from the Evodiae Fructus as the major constituents did not show in vitro hepatoprotective effect. From these results, it would be necessary to further isolation of its hepatoprotective compounds from the butanol soluble fraction of the hot water extract of Evodiae Fructus.

  • PDF

The Effects of Injinchunggan-tang(Yinchenqinggan-tang) on $TNF-\alpha$ signal transmission system in HepG2 cell (인진청간탕(茵蔯淸肝湯)이 HepG2 cell의 $TNF-\alpha$ 신호전달계에 미치는 영향(影響))

  • Kang Woo-Sung;Kim Young-Chul;Lee Jang-Hoon;Woo Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.28-45
    • /
    • 2004
  • Objectives : The main purpose of this study is to evaluate the effect of Injinchunggan-tang on $TNF-{\alpha}$ signal transmission system. Materials and Methods : We analyzed the following with quantitative RT-PCR method; the effect of Injinchunggan-tang on secretion of $TNF-\alpha$ mRNA/protein and stability, the effect on gene revelation that consists of signal transmission system (TRAIL, NIK, A20, TRADD, RAIDD, RIP TNFR-I, TNFR-II, TRAF1, TRAF2, FADD), the one on activation of p38, Erk1/2 MAPK and the rate of nuclear $NF-{\kappa}B/cytosolic\;NF-{\kappa}B$ in HepG2 cell. We also analyzed the inhibitory effect of Injinchunggan-tang on the apoptosis of HepG2 cell that $TNF-{\alpha}$ induces and the $NF-{\kappa}B$ restraint effected by transfection of $I{\kappa}B{\Delta}N$ through tryphan blue exclusion assay. Results : Injinchunggan-tang prohibits revelation of $TNF-{\alpha}$ mRNA in HepG2 cell and the creation of protein. However, it has no effect on the stability of $TNF-{\alpha}$ mRNA. While it did not have any effect on the generation of TRAIL, NIK, A20, TRADD, RAIDD and RIP genes, Injinchunggan-tang reduces the revelation of TNFR-I, TNFR-II, TRAF1, TRAF2 and FADD genes. It has been confirmed that Injinchunggan-tang restraints the revelation of $TNF-{\alpha}$ mRNA that is promoted by ethanol, acetaldehyde, lipopolysaccharide, in proportion to the treatment density and time. It activated $NF-{\kappa}B$ of HepG2 cell and promoted activation of $NF-{\kappa}B$ that is occurred by $TNF-{\alpha}$. It has been observed that the restraint effect against the $TNF-{\alpha}$ inducing apoptosis is lost when it is intercepted the function of $NF-{\kappa}B$ in HepG2 cell. Conclusion: It has been confirmed that Injinchunggan-tang has restraining effect against the revelation of $TNF-{\alpha}$ and mRNA that is constituent element of TNF-a signal transmission system. It also has been revealed that it restraints the activation of p38, Erk1/2 by $TNF-{\alpha}$. Through this prohibiting effect, it is inferred that it restraints signal transmission among various cells that are related to inflammation reaction. Meanwhile, Injinchunggan-tang protects liver cell from apoptosis that is caused by $TNF-{\alpha}$, by maintaining the activating function for $NF-{\kappa}B$.

  • PDF

Effects of Thiosulfinates Isolated from Allium tuberosum L. on the Growth of Human Cancer Cells (부추의 함황화합물이 인체 암세포 증식에 미치는 영향)

  • Park, Sun-Young;Kim, Jae-Yong;Park, Kyung-Wuk;Kang, Kap-Suk;Park, Ki-Hun;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.1003-1007
    • /
    • 2009
  • To develop Allium tuberosum L. as a cancer preventive food material, thiosulfinates and biological active components were isolated from Allium tuberosum L. and the apoptotic effects of thiosulfinates in human cancer cells were examined. Thiosulfinates decreased viable cell numbers in dose- and time-dependent manners. Thiosulfinates at the 20 $\mu g$/mL concentration inhibited more than 60% cell proliferation in HepG2 and A549 human cancer cells, respectively. Also the morphology of cells treated with thiosulfinates of 30 $\mu g$/mL concentration was distorted with shrunken cell mass while the cell number was lower than that of control cells. The $IC_{50}$ values in the HepG2 cells were higher than those of the A549 cells. Thiosulfinates at the 30 $\mu g$/mL concentration showed the formation of apoptotic bodies and a nuclear condensation, and an increase in the cell populations of the sub-G1 phase in the HepG2 cells. These results indicate that thiosulfinates from Allium tuberosum L. inhibited cell proliferation in HepG2 via apoptosis.

Effect of Yong-dam-sa-gan-tang on apoptosis in human hepatoma HepG2 (용담사간탕(龍膽瀉肝湯)에 의해 유도된 MAP kinases 활성화를 통한 간암 세포주 HepG2의 세포사멸)

  • Yun, Hyun-Jeong;Kim, Han-Seong;Heo, Sook-Kyoung;Hwang, Seong-Goo;Park, Won-Hwan;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.15 no.2
    • /
    • pp.127-137
    • /
    • 2007
  • The purpose of this study was to investigate the effect of Yong-dam-sa-gan-tang (YST) on apoptosis in HepG2 cells, First of all. to study the cytotoxic effect of methanol extract of YST on HepG2 cells, the cells were treated with various concentrations of YST and then cell viability was determined by XTT reduction method and trypan blue exclusion assay. YST reduced proliferation of HepG2 cells in a dose-dependent manner. To confirm the induction of apoptosis, HepG2 cells were treated with various concentrations of YST. The cleavage of poly AD P-ribose polymerase (P ARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of caspase-3, procaspase-8 and procaspase-8 were examined by western blot analysis. YST decreased procaspase-3, procaspase-8 and procaspase-9 levels in a dose-dependent manner and induced the clevage of PARP. YST triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome c from mitochondria to cytosol. Furthermore, YST also downregulated the anti-apoptotic Bcl-2 and upregulated the pro-apoptotic-Bax. Therefore, this result suggest that YST induced HepG2 cell death through the mitochondrial pathway. Sustained activation of the Ras/Raf/MEK/ERK cascade in cells results in a cell cycle arrest and has been implicated in the differentiation of certain cell types, in many cases acting to promote differentiation. YST decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. These results suggest that YST is potentially useful as a chemo-therapeutic agent in HepG2.

  • PDF

The Role of ROS and p38 MAP kinase in Berberine-Induced Apoptosis on Human Hepatoma HepG2 Cells (Berberine에 의한 HepG2 세포의 사멸과정에서 활성기산소와 p38 MAP kinase의 역할에 관한 연구)

  • Hyun, Mee-Sun;Woo, Won-Hong;Hur, Jung-Mu;Kim, Dong-Ho;Mun, Yeun-Ja
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.129-135
    • /
    • 2008
  • Berberine is an isoquinoline alkaloid used in traditional Chinese medicine and has been isolated from a variety of plants, such as Coptis chinensis and Phellodendron amurense. It has a wide spectrum of clinical applications such as in anti-tumor, anti-microbial, and anti-inflammatory activities. However, it is still unknown that berberine related with reactive oxygen species (ROS)-mediated apoptosis pathway in human hepatoma HepG2 cells. In the present study, we are examined the molecular mechanism of ROS- and p38 MAP kinase-mediated apoptosis by berberine in HepG2 cells. Berberine increased cytotoxicity effects by time- and does-dependent manner. $LD_{50}$ was detected 50 ${\mu}M$ at 48h of exposure to berberine. Nuclei cleavage and apoptotic DNA fragmentation were observed in cells treated with 50 ${\mu}M$ of berberine for 48h. Moreover, berberine induced the activating of caspase-3, p53, p38 and Bax expression, whereas the expression of anti-apoptotic signaling pathways, Bcl-2, was decreased. Additionally, berberine-treated cells had an increased level of generation of ROS and nitric oxide (NO). These results indicated that berberine induces apoptosis of HepG2 cells may be mediated oxidative injury acts as an early and upstream change, triggers mitochondrial dysfunction, Bcl-2 and Bax modulation, p38 and p53 activation, caspase-3 activation, and consequent leading to apoptosis.