• Title/Summary/Keyword: HEP

Search Result 1,407, Processing Time 0.031 seconds

Genetic Diversity and Population Structure of Liriope platyphylla (Liliaceae) in Korea (한국내 맥문동의 유전적 다양성과 집단 구조)

  • Huh, Hong-Wook;Choi, Joo-Soo;Lee, Bok-Kyu;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.328-333
    • /
    • 2007
  • Genetic diversity and population structure of eleven Liriope platyphylla (Liliaceae) populations in Korea were determined using genetic variation at 20 allozyme loci. The percent of polymorphic loci within the enzymes was 55.9%. Genetic diversity at the species level and at the population level was high(Hes = 0.178; Hep = 0.168, respectively), whereas the extent of the population divergence was relatively low ($G_{ST}$ = 0.064). $F_{IS}$, a measure of the deviation from random mating within the 11 populations, was 0.311. Total genetic diversity values ($H_T$) varied between 0.0 and 0.535, giving an average over all polymorphic loci of 0.323. The interlocus variation in within population genetic diversity ($H_S$) was high (0.305). An indirect estimate of the number of migrants per generation (Nm = 3.66) indicates that gene flow is high among Korean populations of the species. In addition, analysis of fixation indices revealed a substantial heterozygosity deficiency in some populations and at some loci. Mean genetic identity between populations was 0.988. It is highly probable that directional toward genetic uniformity in a relatively the homogenous habitat is thought to be operated among Korean populations of L. platyphylla.

Effects of medicinal herb water extracts on expression of hepatic glucokinase, pyruvate dehydrogenase and acetyl-CoA carboxylase mRNA (한약재 물 추출물이 간세포 Glucokinase, Pyruvate Dehydrogenase, Acetyl-CoA Carboxylase mRNA 발현에 미치는 영향)

  • Kim, Hyun Sook;Kim, Tae Woo;Kim, Dae Jung;Lee, Jae Sung;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.46 no.2
    • /
    • pp.119-125
    • /
    • 2013
  • We studied the anti-diabetic effects of medicinal herb water extracts on expression of hepatic glucokinase (GCK), pyruvate dehydrogenase (PDH), and acetyl-CoA carboxylase (ACC) mRNA. The medicinal herbs used for experiments were Cornus officinalis (CO), Paeonia suffruticosa Andrews (PSA), Discorea japonica Thunb. (DJ), Rehmannia glutinosa (RG), Lycium chinense (LC), and Pyrus pyrifolia (PP). For GCK mRNA expression, CO, RG, and LC water extracts exhibited a more effective activity than other extracts. Cells treated with RG and LC water extracts showed an increase in expression of PDH mRNA to 191% and 124%, respectively, compared to control. Expression of ACC mRNA was significantly higher in LC water extract. These data indicate that CO, RG, and LC water extracts stimulates expression of hepatic GCK, PDH, and ACC mRNA.

Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition

  • Soung, Nak-Kyun;Kim, Hye-Min;Asami, Yukihiro;Kim, Dong Hyun;Cho, Yangrae;Naik, Ravi;Jang, Yerin;Jang, Kusic;Han, Ho Jin;Ganipisetti, Srinivas Rao;Cha-Molstad, Hyunjoo;Hwang, Joonsung;Lee, Kyung Ho;Ko, Sung-Kyun;Jang, Jae-Hyuk;Ryoo, In-Ja;Kwon, Yong Tae;Lee, Kyung Sang;Osada, Hiroyuki;Lee, Kyeong;Kim, Bo Yeon;Ahn, Jong Seog
    • Experimental and Molecular Medicine
    • /
    • v.51 no.2
    • /
    • pp.1.1-1.14
    • /
    • 2019
  • Hypoxia-inducible factor-$1{\alpha}$ ($HIF-1{\alpha}$) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of $HIF-1{\alpha}$ in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of $HIF-1{\alpha}$ translation by binding to the C-terminal glycinerich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3'-untranslated region of $HIF-1{\alpha}$ mRNA. Moreover, MO-460 suppresses $HIF-1{\alpha}$ protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxiainduced tumor survival and thus offer an avenue for the development of novel anticancer therapies.

Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression

  • Zhou, Da;Chen, Yuan-Wen;Zhao, Ze-Hua;Yang, Rui-Xu;Xin, Feng-Zhi;Liu, Xiao-Lin;Pan, Qin;Zhou, Huiping;Fan, Jian-Gao
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.2.1-2.12
    • /
    • 2018
  • Glucagon-like peptide-1 (GLP-1) has a broad spectrum of biological activity by regulating metabolic processes via both the direct activation of the class B family of G protein-coupled receptors and indirect nonreceptor-mediated pathways. GLP-1 receptor (GLP-1R) agonists have significant therapeutic effects on non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. However, clinical studies indicated that GLP-1 treatment had little effect on hepatic steatosis in some NAFLD patients, suggesting that GLP-1 resistance may occur in these patients. It is well-known that the gut metabolite sodium butyrate (NaB) could promote GLP-1 secretion from intestinal L cells. However, it is unclear whether NaB improves hepatic GLP-1 responsiveness in NAFLD. In the current study, we showed that the serum GLP-1 levels of NAFLD patients were similar to those of normal controls, but hepatic GLP-1R expression was significantly downregulated in NAFLD patients. Similarly, in the NAFLD mouse model, mice fed with a high-fat diet showed reduced hepatic GLP-1R expression, which was reversed by NaB treatment and accompanied by markedly alleviated liver steatosis. In addition, NaB treatment also upregulated the hepatic p-AMPK/p-ACC and insulin receptor/insulin receptor substrate-1 expression levels. Furthermore, NaB-enhanced GLP-1R expression in HepG2 cells by inhibiting histone deacetylase-2 independent of GPR43/GPR109a. These results indicate that NaB is able to prevent the progression of NAFL to NASH via promoting hepatic GLP-1R expression. NaB is a GLP-1 sensitizer and represents a potential therapeutic adjuvant to prevent NAFL progression to NASH.

Antioxidant Activity and Cytotoxicity against Human Cancer Cells of Glycyrrhiza New Varieties : A Comparison with Glycyrrhiza Official Compendia (감초 신품종과 약전 수재 감초 추출물의 항산화 활성 및 암세포 독성 비교 연구)

  • Kim, Minhee;Kang, Myunghoon;Lee, Jeonghoon;Leem, Kang-Hyun;An, Hyo-Jin;Jin, Jong-Sik;Lee, Jong-Hyun;Chang, Jaeki;Seong, Shin;Kim, Wonnam
    • The Korea Journal of Herbology
    • /
    • v.36 no.3
    • /
    • pp.15-24
    • /
    • 2021
  • Objectives : The Glycyrrhiza new varieties, WONGAM and SINWONGAM, were developed through interspecific cross between Glycyrrhiza glabra and Glycyrrhiza uralensis by the National Institute of Horticultural and Herbal Science, Rural Development Administration in Korea. This in vitro study was undertaken to compare the antioxidant and cytotoxic effects between Glycyrrhiza new varieties (WONGAM and SINWONGAM) and official compendia (Glycyrrhiza glabra and Glycyrrhiza uralensis). Methods : Antioxidant activity was determined by DPPH (1,1-diphenyl-2-picrylhy drazyl), ABTS (2,2-azino-bis (3-rthylbenz-thiazoline-6-sulfonic acid)) diammonium salt, Nitrite radical scavenging assay, and Reducing Power assay. Cytotoxicity was determined by MTT assay and cell morphology was observed by an inverted microscope. Results : The DPPH, ABTS, Nitrite radical scavenging activities and reducing power of Glycyrrhiza glabra, Glycyrrhiza uralensis, WONGAM, and SINWONGAM were evaluated at different concentrations (0, 10, 50, 100, 500, 1000 ㎍/㎖). Glycyrrhiza glabra, Glycyrrhiza uralensis, WONGAM, and SINWONGAM showed similar dose-dependent increase in antioxidant activities. The cytotoxic effects with increasing doses of Glycyrrhiza new varieties and official compendia did not differ in HCT116, HT29, A549, MDA-MB231, PC3, ACHN, and HeLa cells. However, significant difference in cytotoxicity were observed in AGS, MCF7 and Hep3B cells by Glycyrrhiza glabra, Glycyrrhiza uralensis, WONGAM, and SINWONGAM. Conclusions : These results showed that Glycyrrhiza new varieties and official compendia acts as a potent antioxidant. Also, the finding that equivalent cytotoxic potency was observed in a cell dependent manner. Our study suggests that Glycyrrhiza new varieties may offer a wide-variety of health benefits.

Evaluation of in vitro anti-oxidant and anti-inflammatory activities of Korean and Chinese Lonicera caerulea

  • Lee, You-Suk;Cho, Il Je;Kim, Joo Wan;Lee, Sun-Kyoung;Ku, Sae Kwang;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.486-493
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: The honeysuckle berry (HB) contains ascorbic acid and phenolic components, especially anthocyanins, flavonoids, and low-molecular-weight phenolic acids. In order to examine the potential of HB as a hepatoprotective medicinal food, we evaluated the in vitro anti-oxidant and anti-inflammatory activities of Korean HB (HBK) and Chinese HB (HBC). MATERIALS/METHODS: Antioxidant and anti-inflammatory effects of the extracts were examined in HepG2 and RAW 264.7 cells, respectively. The anti-oxidant capacity was determined by DPPH, SOD, CAT, and ARE luciferase activities. The production of nitric oxide (NO) as an inflammatory marker was also evaluated. The Nrf2-mediated mRNA levels of heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase [quinone] 1 (Nqo1), and glutamate-cysteine ligase catalytic subunit (Gclc) were measured. The concentrations of HB extracts used were 3, 10, 30, 100, and $300{\mu}g/mL$. RESULTS: The radical scavenging activity of all HB extracts increased in a concentration-dependent manner (P < 0.01 or P < 0.05). SOD (P < 0.05) and CAT (P < 0.01) activities were increased by treatment with $300{\mu}g/mL$ of each HB extract, when compared to those in the control. NO production was observed in cells pretreated with 100 or $300{\mu}g/mL$ of HBC and HBK (P < 0.01). Treatment with $300{\mu}g/mL$ of HBC significantly increased Nqo1 (P < 0.01) and Gclc (P < 0.05) mRNA levels compared to those in the control. Treatment with $300{\mu}g/mL$ of HBK (P < 0.05) and HBC (P < 0.01) also significantly increased the HO-1 mRNA level compared to that in the control. CONCLUSIONS: Thus, the Korean and Chinese HBs were found to possess favorable in vitro anti-oxidant and anti-inflammatory activities. Nrf2 and its related anti-oxidant genes were associated with both anti-oxidant and anti-inflammatory activities in HB-treated cells. Further studies are needed to confirm these in vivo effects.

Antioxidant and Cytotoxic Activities of Hot Water and Ethanol Extracts From Caesalpinia sappan (소목의 열수 및 에탄올 추출물의 항산화 및 항암활성)

  • Park, Mi-Hye;Kim, Bumsik
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • Caesalpinia sappan L. is an oriental medicinal plant distributed in the Asia Pacific region including India, Malaysia, and China. The dried heartwood of Caesalpinia sappan has been traditionally used as an analgesic and anti-inflammatory drug. In this study, the effects of extract methods of C. sappan on contents of total polyphenols and flavonoids, antioxidant activity, and cytotoxic activity were evaluated. As a result, hot water extract from C. sappan (CSWE) significantly exhibited contents of total polyphenols and flavonoids (22.6 mg GAE/g and 14.5 mg QE/g) higher than 70% ethanol extract (CSEE) (17.6 mg GAE/g and 13.2 mg QE/g). However, CSEE showed greater antioxidant activity than CSWE in both DPPH and ABTS. Also, the cytotoxicity of C. sappan against three kinds of cancer cell lines was higher in CSEE than in CSWE. These results show that ethanol extract is a better extract method than hot water method to maintain antioxidant and anti-cancer activities.

Hsa-miR-422a Originated from Short Interspersed Nuclear Element Increases ARID5B Expression by Collaborating with NF-E2

  • Kim, Woo Ryung;Park, Eun Gyung;Lee, Hee-Eun;Park, Sang-Je;Huh, Jae-Won;Kim, Jeong Nam;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.465-478
    • /
    • 2022
  • MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate the expression of target messenger RNA (mRNA) complementary to the 3' untranslated region (UTR) at the post-transcriptional level. Hsa-miR-422a, which is commonly known as miRNA derived from transposable element (MDTE), was derived from short interspersed nuclear element (SINE). Through expression analysis, hsa-miR-422a was found to be highly expressed in both the small intestine and liver of crab-eating monkey. AT-Rich Interaction Domain 5 B (ARID5B) was selected as the target gene of hsa-miR-422a, which has two binding sites in both the exon and 3'UTR of ARID5B. To identify the interaction between hsa-miR-422a and ARID5B, a dual luciferase assay was conducted in HepG2 cell line. The luciferase activity of cells treated with the hsa-miR-422a mimic was upregulated and inversely downregulated when both the hsa-miR-422a mimic and inhibitor were administered. Nuclear factor erythroid-2 (NF-E2) was selected as the core transcription factor (TF) via feed forward loop analysis. The luciferase expression was downregulated when both the hsa-miR-422a mimic and siRNA of NF-E2 were treated, compared to the treatment of the hsa-miR-422a mimic alone. The present study suggests that hsa-miR-422a derived from SINE could bind to the exon region as well as the 3'UTR of ARID5B. Additionally, hsa-miR-422a was found to share binding sites in ARID5B with several TFs, including NF-E2. The hsa-miR-422a might thus interact with TF to regulate the expression of ARID5B, as demonstrated experimentally. Altogether, hsa-miR-422a acts as a super enhancer miRNA of ARID5B by collaborating with TF and NF-E2.

Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways

  • Hyo Lim Lee;Jong Min Kim;Min Ji Go;Seung Gyum Joo;Tae Yoon Kim;Han Su Lee;Ju Hui Kim;Jin-Sung Son;Ho Jin Heo
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.606-621
    • /
    • 2024
  • This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.

Mechanism of Panax notoginseng saponins modulation of miR-214-3p/NR1I3 affecting the pharmacodynamics and pharmacokinetics of warfarin

  • Yuting Yang;Zhenyu Zhai;Huiming Yao;Ling He;Jun Shao;Zirong Xia;Juxiang Li
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.494-503
    • /
    • 2024
  • Background: With the prevalence of dietary supplements, the use of combinations of herbs and drugs is gradually increasing, together with the risk of drug interactions. In our clinical work, we unexpectedly found that the combination of Panax notoginseng and warfarin, which are herbs that activate blood circulation and remove blood stasis, showed antagonistic effects instead. The purpose of this study was to evaluate the drug interaction between Panax notoginseng saponins (PNS) and warfarin, the main active ingredient of Panax notoginseng, and to explore the interaction mechanism. Methods: The effects and mechanisms of PNS on the pharmacodynamics and pharmacokinetics of warfarin were explored mainly in Sprague-Dawley rats and HepG2 cells. Elisa was used to detect the concentrations of coagulation factors, HPLC-MS to detect the blood concentrations of warfarin in rats, immunoblotting was employed to examine protein levels, qRT-PCR to detect mRNA levels, cellular immunofluorescence to detect the localization of NR1I3, and dual luciferase to verify the binding of miR-214-3p and NR1I3. Results: PNS significantly accelerated warfarin metabolism and reduced its efficacy, accompanied by increased expression of NR1I3 and CYP2C9. Interference with NR1I3 rescued the accelerated metabolism of warfarin induce by PNS co-administration. In addition, we demonstrated that PNS significantly reduced miR-214-3p expression, whereas miR-214-3p overexpression reduced NR1I3 and CYP2C9 expression, resulting in a weakened antagonistic effect of PNS on warfarin. Additionally, we found that miR-214-3p bound directly to NR1I3 3'-UTR and significantly downregulated NR1I3 expression. Conclusion: Our study demonstrated that PNS accelerates warfarin metabolism and reduces its pharmacodynamics by downregulating miR-214-3p, leading to increased expression of its target gene NR1I3, these findings provide new insights for clinical drug applications to avoid adverse effects.