• 제목/요약/키워드: HEK-293 cells

검색결과 244건 처리시간 0.026초

Antimicrobial activity of Garcinia mangostana L. ethanol extract against Cutibacterium acnes and Staphylococcus aureus

  • Lim, Yun Kyong;Yoo, So Young;Park, Soon-Nang;Lee, Dae Sung;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제44권3호
    • /
    • pp.101-107
    • /
    • 2019
  • The purpose of this study was to investigate the antimicrobial activity of the ethanol extract of Garcinia mangostana L. (mangosteen) against Cutibacterium acnes (6 strains) and Staphylococcus aureus (6 strains). The antimicrobial activity of the mangosteen extract was evaluated based on its minimal bactericidal concentration. Cytotoxicity of the mangosteen extract against human embryonic kidney 293 (HEK 293) cells was determined using the cell counting method. The data showed that the mangosteen extract was not toxic to HEK 293 cells at a concentration of up to $16{\mu}g/mL$ and killed 87.0% and 99.9% of C. acnes and S. aureus after 10 minutes and 1 hour of treatment, respectively. These results suggest that ethanol extract of mangosteen can be used as an anti-acne agent.

Pathway Analysis in HEK 293T Cells Overexpressing HIV-1 Tat and Nucleocapsid

  • Lee, Min-Joo;Park, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1103-1108
    • /
    • 2009
  • The human immunodeficiency virus (HIV)-l protein Tat acts as a transcription transactivator that stimulates expression of the infected viral genome. It is released from infected cells and can similarly affect neighboring cells. The nucleocapsid is an important protein that has a related significant role in early mRNA expression, and which contributes to the rapid viral replication that occurs during HIV-1 infection. To investigate the interaction between the Tat and nucleocapsid proteins, we utilized cDNA micro arrays using pTat and flag NC cotransfection in HEK 293T cells and reverse transcription-polymerase chain reaction to validate the micro array data. Four upregulated genes and nine downregulated genes were selected as candidate genes. Gene ontology analysis was conducted to define the biological process of the input genes. A proteomic approach using PathwayStudio determined the relationship between Tat and nucleocapsid; two automatically built pathways represented the interactions between the upregulated and downregulated genes. The results indicate that the up- and downregulated genes regulate HIV-1 replication and proliferation, and viral entry.

Biological Screening of Novel Derivatives of Valproic Acid for Anticancer and Antiangiogenic Properties

  • Farooq, Muhammad;El-Faham, Ayman;Khattab, Sherine N.;Elkayal, Ahmed M.;Ibrahim, Mahmoud F.;Taha, Nael Abu;Baabbad, Almohannad;Wadaan, Mohammad A.M.;Hamed, Ezaat A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7785-7792
    • /
    • 2014
  • Background: Valproic acid (VPA) is a potent anticancer and antiangiogenic agent. However, design and synthesis of chemical derivatives with improved antiangiogenic and anticancer activities are still necessary. In this study a library of novel derivatives of VPA was synthesized and tested. Methods: A human liver cancer cell line (HepG2) and a human normal embryonic kidney cell line (HEK 293) were exposed to various concentrations of VPA derivatives for 24 hours and cell viability was checked by MTT colorimetric assay. Anti-angiogenic properties were evaluated in transgenic zebrafish embryos. Results: N-valproylglycine derivatives suppressed survival almost 70% (p value 0.001) in HepG2 cells but only 10-12% in HEK 293 cells (p value 0.133). They also suppressed angiogenic blood vessel formation by 80% when used between $2-20{\mu}M$ in zebrafish embryos. Valproic acid hydrazides showed moderate level of anticancer activity by affecting 30-50% (p value 0.001) of cell viability in HepG2 cells and 8-10% in HEK293 cells (p value 0.034). Conclusion: The majority of compounds in this study showed potent and stronger antiangiogenic and anticancer activity than VPA. They proved selectively toxic to cancer cells and safer for normal cells. Moreover, these compounds inhibited developmental angiogenesis in zebrafish embryos. Based on the fact that liver is a highly vascularized organ, in case of liver carcinoma these compounds have the potential to target the pathological angiogenesis and could be an effective strategy to treat hepatocellular carcinoma.

The role of ginseng total saponin in transient receptor potential melastatin type 7 channels

  • Kim, Byung Joo
    • Animal cells and systems
    • /
    • 제16권5호
    • /
    • pp.376-384
    • /
    • 2012
  • Although ginsenosides have a variety of physiologic or pharmacologic functions in various regions, there are only a few reports on the effects of transient receptor potential melastatin 7 (TRPM7) channels. Here, we showed evidence suggesting that TRPM7 channels play an important role in ginseng total saponin (GTS)-mediated cellular injury. The combination techniques of electrophysiology, pharmacological analysis, small interfering RNA (siRNA) method and cell death assays were used. GTS depolarized the resting membrane potentials and decreased the amplitude of pacemaker potentials in cultured interstitial cells of Cajal (ICCs) in gastrointestinal (GI) tract. The TRPM7-like currents in single ICCs and the overexpressing TRPM7 in HEK293 cells were inhibited by GTS. However, GTS had no effect on $Ca^{2+}$-activated $Cl^-$ conductance. GTS inhibited the survival of human gastric (AGS) and brea (MCF-7) adenocarcinoma cells. Also, GTS inhibited the TRPM7-like currents in AGS and MCF-7 cells. The GTS-mediated cytotoxicity was inhibited by TRPM7-specific siRNA. In addition, we showed that overexpression of TRPM7 channels in HEK293 cells was inhibited by GTS. Thus, TRPM7 channels are involved in GTS-mediated cell death in AGS and MCF-7 cells, and these channels may represent a novel target for physiological disorders where GTS plays an important role.

Alzheimer's Disease-linked Swedish Amyloid Precursor Protein Mutation Induces Cell Death by Increasing Reactive Oxygen Species Generation

  • Kim Hye Sun;Lee Jun Ho;Kim Eun Mee;Lee Jean Pyo;Suh Yoo Hun
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권1호
    • /
    • pp.19-24
    • /
    • 2005
  • The Swedish double mutation (KM670/671NL) of amyloid precursor protein (Swe-APP) is associated with early-onset familial Alzheimer's disease (FAD) and increases amyloid beta peptide production. Although APP/A/3 mediated neurotoxicity is observed both in vitro and in vivo, the relationship between mutant APP expression, A/3 production, and neuronal death observed in the brains of FAD patients remains to be elucidated. In this study, we investigated the mechanisms of Swe-APP-induced cell death in HEK293 and NGF-differentiated PC 12 cells. We found that the expression of Swe-APP induced cytochrome C relase, activation of caspase 3 in HEK 293 and NGF-differentiated PC 12 cells. We also show that the reactive oxygen species (ROS) was detected in Swe-APP expressing HEK 293 cells and NGF-differentiated PC 12 cells and that pretreatment with vitamine E attenuated the cellular death, cytochrome C release induced by Swe-APP expression, indicating the involvement of free radical in these processes. These results suggest one of possible apoptotic mechanisms of Swe-APP which could occur through cytochrome C release from mitochondria and this apoptosis inducing effects could be at least in part, due to ROS generation by Swe-APP expression.

  • PDF

Effects of Ser2 and Tyr6 Mutants of BAF53 on Cell Growth and p53-dependent Transcription

  • Lee, Jung Hwa;Lee, Ji Yeon;Chang, Seok Hoon;Kang, Mi Jin;Kwon, Hyockman
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.289-293
    • /
    • 2005
  • BAF53 is an actin-related protein that shuttles between nucleus and cytoplasm. In the nucleus, it constitutes an integral component of many chromatin-modifying complexes such as the SWI/SNF, TIP60, TRRAP, and TIP48/49 complexes. BAF53 is essential for growth, but its function remains elusive. BAF53 homologues from yeast to humans have a conserved N-terminal motif, MS_(G/A)(G/A)__(V/L)YGG, which is unique to these proteins. Previously we showed that over-expression of an N-terminal deletion mutant of BAF53 ($BAF53_-{\Delta}N$) reduced the viability of HEK293 and HeLa cells. When we replaced the serine 2 and tyrosine 6 of this N-terminal motif with alanine, over-expression of the alanine-replaced BAF53 strongly impaired the growth of HEK293 cells whereas replacement with aspartate/glutamate had no effect. The alanine-replaced BAF53 mutants also stimulated p53-dependent transcription, in which the SWI/SNF and TRRAP complexes are involved. Our results demonstrate that serine 2 and tyrosine 6 play important roles in BAF53 activity.

Transcriptional Regulation and Apoptosis Induction by Tcf/$\beta$-Catenin Complex in Various T-Cells

  • Jeong, Sunjoo;Lee, Seung-Yeon;Lee, Sun-Hee
    • Animal cells and systems
    • /
    • 제4권4호
    • /
    • pp.389-394
    • /
    • 2000
  • The Tcf-1 (1-cell factor-1) protein binds to the T-cell specific enhancer sequences and plays an architectural role in the assembly of transcriptional machinery. One of the Tcf family proteins, Tcf-4, was found to be an important regulator for colon cancer development where it activates specific genes upon binding to $\beta$-catenin following Wnt signaling. We were interested in the transcriptional regulatory activities of Tcf-1 and Tcf-4 proteins in T-cells and colon cancer cells. Transactivation assay was developed using a reporter plasmid containing luciferase gene under the control of Tcf responsive elements. Luciferase activity was determined following co-transfection of the reporter along with Tcf-1 and/or $\beta$-catenin expressing plasmids. Transcription was significantly induced by $\beta$-catenin expression in all cells. Tcf-1 by itself did not induce transcription in the mature T-cell lines, but overexpressed Tcf-1 greatly activated transcription in the immature T-cell line. In addition, transfected $\beta$-catenin induced apoptosis, but co-transfected Tcf-1 suppressed apoptosis in HEK293 cells. These results suggest that Tcf-1 and $\beta$-catenin differently regulate transcription and apoptosis.

  • PDF

Pharmacological and electrophysiological characterization of rat P2X currents

  • Li, Hai-Ying;Oh, Seog-Bae;Kim, Joong-Soo
    • International Journal of Oral Biology
    • /
    • 제33권1호
    • /
    • pp.1-5
    • /
    • 2008
  • Adenosine 5'-triphosphate (ATP) is an important extracellular signaling molecule which is involved in a variety of physiological responses in many different tissues and cell types, by acting at P2 receptors, either ionotropic (P2X) or G protein-coupled metabotropic receptors (P2Y). P2X receptors have seven isoforms designated as $P2X_{1^-}P2X_7$. In this study, we investigated the electrophysiological and pharmacological properties of rat $P2X_{1^-}P2X_4$ currents by using whole-cell patch clamp technique in a heterologous expression system. When ATP-induced currents were analyzed in human embryonic kidney (HEK293) cells following transient transfection of rat $P2X_{1^-}P2X_4$, the currents showed different pharmacological and electrophysiological properties. ATP evoked inward currents with fast activation and fast desensitization in $P2X_{^1-}$ or $P2X_{3^-}$ expressing HEK293 cells, but in $P2X_{2^-}$ or $P2X_{4^-}$ expressing HEK293 cells, ATP evoked inward currents with slow activation and slow desensitization. While PPADS and suramin inhibited $P2X_2$ or $P2X_3$ receptor-mediated currents, they had little effects on $P2X_4$ receptor-mediated currents. Ivermectin potentiated and prolonged $P2X_4$ receptor-mediated currents, but did not affect $P2X_2$ or $P2X_3$ receptor-mediated currents. We suggest that distinct pharmacological and electrophysiological properties among P2X receptor subtypes would be a useful tool to determine expression patterns of P2X receptors in the nervous system including trigeminal sensory neurons and microglia.

Crotamiton, an Anti-Scabies Agent, Suppresses Histamine- and Chloroquine-Induced Itch Pathways in Sensory Neurons and Alleviates Scratching in Mice

  • Choi, Da-Som;Ji, Yeounjung;Jang, Yongwoo;Lee, Wook-Joo;Shim, Won-Sik
    • Biomolecules & Therapeutics
    • /
    • 제28권6호
    • /
    • pp.569-575
    • /
    • 2020
  • Crotamiton is an anti-scabies drug, but it was recently found that crotamiton also suppresses non-scabietic itching in mice. However, the underlying mechanism is largely unclear. Therefore, aim of the study is to investigate mechanisms of the anti-pruritic effect of crotamiton for non-scabietic itching. Histamine and chloroquine are used as non-scabietic pruritogens. The effect of crotamiton was identified using fluorometric intracellular calcium assays in HEK293T cells and primary cultured dorsal root ganglion (DRG) neurons. Further in vivo effect was evaluated by scratching behavior tests. Crotamiton strongly inhibited histamine-induced calcium influx in HEK293T cells, expressing both histamine receptor 1 (H1R) and transient receptor potential vanilloid 1 (TRPV1), as a model of histamine-induced itching. Similarly, it also blocked chloroquine-induced calcium influx in HEK293T cells, expressing both Mas-related G-protein-coupled receptor A3 (MRGPRA3) and transient receptor potential A1 (TRPA1), as a model of histamine-independent itching. Furthermore, crotamiton also suppressed both histamine- and chloroquine-induced calcium influx in primary cultures of mouse DRG. Additionally, crotamiton strongly suppressed histamine- and chloroquine-induced scratching in mice. Overall, it was found that crotamiton has an anti-pruritic effect against non-scabietic itching by histamine and chloroquine. Therefore, crotamiton may be used as a general anti-pruritic agent, irrespective of the presence of scabies.

Expression Profiles and Pathway Analysis in HEK 293 T Cells Overexpressing HIV-1 Tat and Nucleocapsid Using cDNA Microarray

  • Park, Seong-Eun;Lee, Min-Joo;Yang, Moon-Hee;Ahn, Ka-Young;Jang, Soo-In;Suh, Young-Ju;Myung, Hee-Joon;You, Ji-Chang;Park, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.154-161
    • /
    • 2007
  • Human immunodeficiency virus type 1 (HIV-1) infections are responsible for a substantial number of deaths annually and represent a significant threat to public health. According to the latest study, the Tat (Transactivator of transcription) protein is essential in transcription and replication of viral genes, and is among the early expression genes involved in the life cycle of HIV. The virion NC (nucleocapsid) plays an important role in early mRNA expression and contributes to the rapid viral replication that occurs during HIV-1 infection. Therefore, we attempted to elucidate the relationship between the Tat protein and nucleocapsid protein. In a comparison of two independently prepared and hybridized samples, flag NC overexpressed HEK 293T cells and pTat overexpressed HEK 293T cells, and hybridization showed the differences in expression in each case. Among the microarray results confirmed with real-time reverse transcriptase assay, twelve genes were identified to be involved according to their gene expression profiles. Of approximately 8,208 human genes that were analyzed, we monitored candidate genes that might have been related to NC and Tat genes from gene expression profiles. Additionally, the pathways could be viewed and analyzed through the use of Pathway Studio software. The pathways from the gene list were built and paths were found among the molecules/cell objects/processes by the curation method.