• Title/Summary/Keyword: HEC

Search Result 783, Processing Time 0.026 seconds

Fabrication of Gel-type Electrolyte for the Development of Reference Electrode for Sea Water and Application to Measuring Equipment for Total Residual Oxidants (해수용 기준전극 개발을 위한 겔 타입 내부전해질 제조 및 잔류염소 측정장치에의 적용)

  • Kim, Yu-Jin;Lee, Hae-Don;Kim, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.153-157
    • /
    • 2017
  • Gel type internal electrolytes were synthesized by varying hydroxyethyl-cellulose (HEC) amounts and their durability and conductivity were measured. The ionic conductivity decreased as the content of HEC increased thus the internal electrolyte containing more than 12% of HEC could not be used as a reference electrode. Based on durability test results, as the HEC amount decreased carrier density resulting in increasing of the amount of KCl coming out of the porous membrane. Therefore in order to use long time at ballast water treatment systems, we selected 10% HEC for gel type internal electrolyte. The resolution test for total residual oxidants (TRO) was carried out using the TRO sensor and the gel type reference electrode made of 10% HEC. A 50 mV potential was applied to the TRO sensor for 30 sec and changes in the current were measured. It was confirmed that the TRO concentrations ranging from 0 to 15 mg/L could be separated at salinity conditions of 0.2~30 PSU. The results indicated that the TRO concentration at sea water and at fresh water was successfully measured by the TRO sensor constructed with the reference electrode using gel-type internal electrolyte of HEC.

Runoff Analysis of Kumho River Basin Using HEC-HMS (HEC-HMS를 이용한 금호강 유역의 유출분석)

  • Jung, Chan-Yong;Lim, Hyuk-Jin;Song, In-Ryeol;Lee, Jin-Won;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1078-1083
    • /
    • 2009
  • HEC-HMS(Hydrologic Modeling System)은 강우-유출 모의를 위한 차세대 소프트웨어이며 HEC-1에 포함되어 있는 단위도 및 수문학적 홍수추적 이외에도 격자형 강우자료(레이더 데이터)를 이용하여 적용할 수있는 유사분포 유출변화와 장기 연속모의에 적용할 수 있는 간단한 수분감소 등을 추가적으로 포함하고 있다. 또한 GUI(Graphical User Interface)환경, 통합 수문분석 성분, 자료 저장 및 관리 능력, 그래�d 처리 및리포트 출력기능으로 구성되어 있으며 여러 가지 프로그램 언어(C, C++, Fortran)를 이용하여 개발되었다. 본 연구에서는 낙동강 수계의 금호강에 위치한 동촌 지점을 유출구로 선정하고 5개의 소유역과 두 개의 하도로 구성하여 유출모의를 실시하였으며 수문자료 선정은 2007년$^{\sim}$2008년에 발생한 홍수사상과 유량조사 사업단에서 개발한 수위-유량관계곡선식을 활용하였다. 또한, HEC-GeoHMS 모형을 GIS와 연계하여 지형인자를 추출하고 추출된 지형인자를 이용하여 매개변수를 산정하였다. HEC-HMS 모형의 계산 조건에서 손실 우량은 SCS CN, 유출변환은 Clark 단위도법을 적용하였다. 또한 관측치와 계산치의 적합도 검증은 평균제곱 근오차(root mean squar error; RMSE)와 모형 효율성 계수(model efficiency; ME)를 산정하여 분석하였다

  • PDF

Flood Runoff Analysis for Agricultural Small Watershed Using HEC-HMS Model and HEC-GeoHMS Module (HEC-HMS 모형과 HEC-GeoHMS 모듈을 이용한 농업소유역의 홍수유출 해석)

  • 김상민;성충현;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.119-127
    • /
    • 2003
  • This paper documents recent efforts to validate the GIS-based hydrologic models, HEC-HMS and HEC-GeoHMS by the US Army Corps of Engineers. HMS and Geo-HMS were used to simulate storm runoff from a small rural watershed, the Balan HS#6. The watershed is 3.85 $\textrm{km}^2$ in size. The watershed topographic, soils, and land use data were processed using the GIS tool fur the models. Input parameters were retrieved and calibrated with the field data. The simulated peak runoff, time to peak, and total direct runoff fer twenty three storms were compared with the observed data. The results showed that the coefficient of determination($R^2$) for the observed peak runoff was 0.95 and an error, RMSE, 3.08 $\textrm{m}^3$/s for calibration stages. In the model verifications, $R^2$ was 0.89 and RMSE 6.79 $\textrm{m}^3$/s, which were slightly less accurate than the calibrated data. The simulated flood hydrographs were well compared to the observed. It was concluded that HMS and GeoHMS are applicable to flood analyses for rural watersheds.

Flood Inundation Analysis in a Low-lying Rural Area using HEC-HMS and HEC-RAS (HEC-HMS와 HEC-RAS를 이용한 농촌 저지대 침수해석)

  • Kim, Hak-Kwan;Kang, Moon-Seong;Song, In-Hong;Hwang, Soon-Ho;Park, Ji-Hoon;Song, Jung-Hun;Kim, Ji-Hye
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • The objective of this study is to analyze the flood inundation in a low-lying rural area. The study watershed selected for this study includes the Il-Pae and Ahn-Gok watersheds. It is located in the Namyangju, Korea and encompasses $3.64km^2$. A major flood event that occurred in July 2011 was chosen as the case for the flood inundation analysis. The Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) and River Analysis System (HEC-RAS) were used to simulate flood runoff and water surface elevation at each cross-section, respectively. The watershed topographic, soil, and land use data were processed using the GIS (Geographic Information System) tool for the models. The contribution to the total flood volume was estimated based on the results simulated by HEC-HMS and HEC-RAS. The results showed that the overflow discharge from the Il-Pae stream constituted 80% of the total flood volume. The contributions of rainfall falling directly on the inundation area and overflow discharge from the Ahn-Gok stream were 15 % and 5 %, respectively. The simulation results in different levee scenarios for the Ahn-Gok stream were also compared. The results indicated that the levee could reduce the flood volume a little bit.

Analysis of Flood Inundation using GIS (GIS를 이용한 홍수범람 분석)

  • Shim, Soon-Bo;Kim, Joo-Hun;Lim, Gwang-Seop;Oh, Deuk-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.132-142
    • /
    • 2003
  • A significant deficiency of most computer models used for stream floodplain analysis, is that the locations of structures impacted by flood waters, such as roads, buildings, and bridges, cannot be effectively compared to the floodplain location. The purpose of this study is the integration of the HEC River Analysis System(HEC-RAS) with ArcView geographic information system to develop a regional model for floodplain determination and representation. Also this study presents to enable two- and three-dimensional floodplain mapping and analysis in the ArcView. The methodology is applied to a Yeoju of Kyunggi-do, located in South Han River Basin. A digital terrain model is synthesized from HEC-RAS cross-sectional data and a digital elevation model of the study area. The flood plain data developed in ArcView was imported into HEC-RAS where it was combined with the field surveyed channel data in order to construct full floodplain cross sections that reflected accurate channel and overbank data for the HEC-RAS model. The flood plain limits could be expressed more accurately on ArcView by using water level data to be computed in HEC-RAS program. The computed water surface elevations and information of cross-section must be manually plotted in order to delineate floodplains. The resulting of this study provided a good representation of the general landscape and contained additional detail within the stream channel. Overall, the results of the study indicate that GIS combined with HEC-RAS is proven to be very useful and efficient for the automatic generation of flood maps, and an effective environment for floodplain mapping and analysis.

  • PDF

Evaluation of an Applicability of HEC-RAS 5.0 for 2-D Flood Inundation Analysis (2차원 홍수범람해석을 위한 HEC-RAS 5.0 적용성 평가)

  • Lee, Choon-Ho;Lee, Tae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.726-733
    • /
    • 2016
  • Recently, the flood frequency and magnitude have increased due to heavy rainfall. Considering the present condition, a flood risk map has been published in many countries to raise awareness about flood damage to people. A flood inundation analysis model, which is used to publish the flood risk map, can be classified as river and inland inundation models according to the inundation cause. Although a variety of flood inundation analysis models are utilized both domestically and overseas, their usability is limited by the expensive price, except for the HEC-RAS model developed by U.S. Army Corps of Engineers (USACE). In the situation, the USACE has developed a 2-D HEC-RAS model that can be linked to the existing 1-D model. This model has been released as a beta version under the name, HEC-RAS 5.0. In this study, the HEC-RAS 5.0 model's features, usability, applicability, and accuracy were evaluated by comparing the performances on Gokgyo-cheon with the FLUMEN model, which is used for domestic flood risk mapping. The results of this study will contribute to river inundation analysis in many different ways after the HEC-RAS 5.0 model is stabilized.

Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA

  • Lee, Hansung;Yoo, Jang-Hee;Park, Daihee
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.333-342
    • /
    • 2014
  • Most hyper-ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K-means algorithm, fuzzy C-means algorithm, GMM-EM algorithm, and HEC algorithm based on minimum-volume ellipsoids using Mahalanobis distance.

Application of Inundation Simulation Model using GIS (GIS를 이용한 침수모의모형의 적용)

  • Kim, Sang-Min;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.314-318
    • /
    • 2001
  • The analysis of the spatial extent of flood inundation is important for flood mitigation. Geographic Information System (GIS) has advantage of analyzing spatial distributed data. Hydrologic Engineering Center's River Analsysis System(HEC-RAS) with HEC-GeoRAS was used to analyze flood inundation. HEC-GeoRAS, which is an ArcView GIS extension designed to process geospatial data for HEC-RAS, is a useful tool for storing, managing, analyzing, and displaying spatially distributed data. Rational formula and 24-hr duration probability precipitation data of Suwon meteorological station were used to estimate the flood runoff. And water profiles were calculated using the HEC-RAS model with HEC-GeoRAS. The flooded region is 8.24ha when 50-yr probability precipitation was applied and 8.8ha when 100-yr was applied to Bahlan study watershed which is located in Whasung county, Kyunggi province, having an area of $29.79km^{2}$.

  • PDF

On Application of Computation Method of Water Surface Profile Using HEC-2 (수면곡선계산법의 적용에 대한 연구 -HEC-2모형 이용을 중심으로-)

  • 이정규;이창해
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.103-111
    • /
    • 1993
  • The HEC(Hydrologic Engineering Center)-2 program, which utilize the standard step method, is usually adopted in the practical works for the water surface profile computation of natural channels. Water profile computation is, in general, carried upstream for subcritical flow. On the other hand, when the reference water surface si given upstream, numerous efforts and a great deal of time are necessary to compute the downstream water surface profile for subcritical flow. A simple method, computing the water surface profile from upstream to downstream for subcritical flow by HEC-2, is suggested in this paper. The applicability and the accuracy of this method are discussed by applying this method to both prismatic and natural channels.

  • PDF

Optimum Dam Gate Operation Considering Downstream Flood Effect (하류부 홍수영향을 고려한 댐 최적수문조작)

  • Kim, Phil Shik;Kim, Sun Joo;Shin, Moon Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.303-307
    • /
    • 2004
  • 본 연구의 목적은 수리 수문학적 모형인 HEC-GeoHMS, HEC-HMS 및 HEC-RAS 모형을 연계 응용 하여 성주댐 유역을 내상으로 수문분석, 홍수유출량분석, 하류 하천의 홍수영향분석 등을 실시하고 이를 이용하여 최적 수문조작 기법을 개발 하는데 있다. 홍수유출량과 하류부 홍수영향분석 결과 유출량은 실측값과 $0.07\~0.12$의 상대 오차를 나타냈고 하류부는 실측값과 $0.06\~0.07$의 오차로 적용성이 입증되었다. 최적 수문조작을 위해 모의 방법인 RigidROM과 성주댐 수문조작 방법을 비교해 본 결과 강우량 $350\~470mm$ 구간에서는 모의 방법이 $470mm\~550mm$ 구간에서는 성주댐 수문조작 방법이 효과적인 것으로 나타났다.

  • PDF