• Title/Summary/Keyword: HEC

Search Result 783, Processing Time 0.024 seconds

Development of Flood Map Using Geographic Information System (GIS기반 홍수예측지도의 개발)

  • Kim Sang-Ho;Kim Han-Joong;Lee Nam-Ho;Kim Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.36-40
    • /
    • 2006
  • The objective of the study is to develop a GIS-based flood map. Hydraulic model (HEC-RAS) is linked with hydrologic model (HEC-HMS) for flood map. Geospatial data processors, HEC-GeoHMS and HEC-GeoRAS, are used for operating HEC-HMS and HEC-RAS. HEC-HMS was calibrated and validated at the Hwa-Ong watershed. HEC-HMS was used for calculating runoff from the Hwa-Ong watershed which consisted of Nam-Yang, Ja-An, U-Eun river sub-watersheds, and HEC-RAS was applied and validated for river flow routing at the Hwa-Ong watershed. The simulated results from HEC-HMS and HEC-RAS were reasonably good compared with the observed data. HEC-RAS and HEC-HMS were applied to simulate flooding from probability rainfall at the Hwa-Ong watershed, and the simulated result was used to develop a flood map. Flood map developed in this study will be used for mitigating and predicting the flood damages.

  • PDF

Dam Break Analysis with HEC-HMS and HEC-RAS (HEC-HMS와 HEC-RAS를 이용한 댐 붕괴 해석)

  • Hong, Seung-Jin;Kim, Soo-Jun;Kim, Hung-Soo;Kyung, Min-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.347-356
    • /
    • 2009
  • This study simulates the dam break situation by a probable maximum precipitation of Soyang-River Dam using HEC-HMS model and HEC-RAS model and compares the simulated results. The probable maximum precipitation was calculated using the flood event of the typhoon Rusa occurred in 2002 and using the mean areal precipitation of the Gangreung region and the moisture maximization method. The estimated probable maximum precipitations were compared for the duration of 6, 12, 18, and 24 hrs and were used as input data for the HEC-HMS model. Moreover, the inflow data calculated by HEC-HMS were utilized as ones for HEC-RAS, and then unsteady flow analysis was conducted. The two models were used for the dam break analysis with the same conditions and the peak flow estimated by HEC-HMS was larger than that of the HEC-RAS model. The applicability of two models was performed from the dam break analysis then we found that we could simulate more realistic peak flow by HEC-RAS than HEC-HMS. However, when we need more fast simulation results we could use HEC-HMS. Therefore, we may need the guidelines for the different utilizations with different purposes of two models. Furthermore, since the two models still include uncertainties, it is important to establish more detailed topographical factors and data reflecting actual rivers.

Rainfall-Runoff Analysis in the Whangryong River Basin Using HEC-HMS and HEC-GeoHMS (HEC-HMS, HEC-GeoHMS를 이용한 황룡강유역의 유출분석)

  • Kim, Chul;Park, Nam-Hee
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.275-287
    • /
    • 2002
  • Rainfall-Runoff Analysis in Whangryong River Basin was made using HEC-HMS and HEC-GeoHMS. The Basin was divided into three sub-basins using HEC-CeoHMS and GIS. Then, GIS input data were derived from each sub-basins. SCS CN runoff-volume model, Snyder's UH direct-runoff model, exponential recession baseflow model and Muskingum routing model in HEC-HMS were used to simulate the runoff volume using selected rainfall event and the parameters were optimized. Peak flowrate calculated using optimized parameters was compared to the observed flowrate in the basin. The result proved to be good agreement with each other. Optimized parameters in this local basin can be used to calculate the peak flowrate in the future.

  • PDF

Flood Inundation Analysis Based on HEC-GeoRAS & HEC-RAS (HEC-GeoRAS & HEC-RAS를 이용한 홍수범람 연구)

  • Hwang, Tae-Ha;Jang, Dae Woon;Kim, Hung Soo;Seo, Byung Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.737-741
    • /
    • 2004
  • 본 연구에서는 지리정보시스템을 이용한 홍수범람에 대한 변화, 홍수범람면적, 홍수범람 위험지역을 산정하기 위해 HEC-GeoRAS 와 HEC-RAS 및 GIS Tool인 ArcView를 이용하여 경안천 유역에 이를 적용하였다. 1:5000 DEM과 경안천 수계 하천정비 기본계획상의 부도를 바탕으로 HEC-GeoRAS를 이용하여 HEC-RAS로 입력하기 위한 기하학적인 자료를 추출하였으며, 추출된 단면을 보정하기 위해 경안천 수계 하천정비기본계획상의 하천단면자료을 이용하였다. 그리고 20년, 30년, 50년, 80년, 100년 빈도별 홍수량자료를 사용하여 경안천 유역의 홍수범람을 모의하였다. 그 결과 빈도별 홍수량에 따른 홍수범람면적과 범람위험지역을 파악할 수 있었다.

  • PDF

Flood Forecasting System by Using HEC-HMS and HEC-RAS in Nakdong River (HEC-HMS와 HEC-RAS를 이용한 낙동강 유역의 홍수예측 시스템)

  • No, Hwang-Won;Choi, Hyun-Yl;Jee, Hong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.421-424
    • /
    • 2011
  • 본 연구의 목적은 유역의 홍수사상을 모의하는데 널리 이용되고 있는 HEC-HMS와 하도의 수리해석에 이용되고 있는 HEC-RAS를 결합시켜 일반 하천유역의 홍수예측을 수행하는 절차를 확립하는데 있다. 따라서 본 연구에서는 낙동강유역을 적용 대상유역으로 선정하고 주요 지류를 대상으로 38개 소유역을 분할하여 유역추적을 실시하였으며, 유역추적기법은 Clark법을 채택하였다. 또한 하도의 홍수추적은 HEC-RAS의 부정류 알고리즘을 이용한 홍수파 도달시간을 산정하여 하도의 주요지점에 대한 홍수예측을 수행하였다. 지금까지 낙동강유역을 대상으로 연구된 결과를 요약 정리하면 다음과 같다.

  • PDF

Flood Forecasting System by Using HEC-HMS and HEC-RAS in Nakdong River (HEC-HMS와 HEC-RAS를 이용한 낙동강 유역의 홍수예측 시스템)

  • No, Hwang-Won;Choi, Hyun-Yl;Jee, Hong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1789-1793
    • /
    • 2010
  • 본 연구의 목적은 유역의 홍수사상을 모의하는데 널리 이용되고 있는 HEC-HMS와 하도의 수리해석에 이용되고 있는 HEC-RAS를 결합시켜 일반 하천유역의 홍수예측을 수행하는 절차를 확립하는데 있다. 따라서 본 연구에서는 낙동강유역을 적용 대상유역으로 선정하고 주요 지류를 대상으로 38개 소유역을 분할하여 유역추적을 실시하였으며, 유역추적기법은 Clark법을 채택하였다. 또한 하도의 홍수추적은 HEC-RAS의 부정류 알고리즘을 이용한 홍수파 도달시간을 산정하여 하도의 주요지점에 대한 홍수예측을 수행하였다. 지금까지 낙동강유역을 대상으로 연구된 결과를 요약 정리하면 다음과 같다.

  • PDF

Flood Effects Analysis of Reservoir Basin through the Linkage of HEC-HMS and HEC-RAS Models (HEC-HMS와 HEC-RAS모형의 연계에 의한 댐 유역의 홍수영향 분석)

  • Lee, Weon-Hee;Kim , Sun-Joo;Kim , Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.15-25
    • /
    • 2004
  • For the effective operation of irrigation reservoirs, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. In this study, the flood effective analysis system was developed through the integration of long-term water budget analysis model, GIS-based HEC-HMS model and HEC-RAS model. The system structure consists of long-term water budget model using modified TANK theory, flood runoff and flood effects analysis model using HEC-GeoHMS, HEC-HMS and HEC-RAS models. The flood effects analysis system simulated the flood runoff from the upstream, downstream flood and long-term runoff of the watershed using the observed data collected from 1998 to 2002 of Seongju dam. The simulated results were reasonably good compared with the observed data. The optimal management method of the reservoir during the whole season is suggested in this study, and the flood analysis system can be a useful tool to evaluate a reservoir operation quantitatively for the mitigation of flood damages of reservoir basin.

Modeling Rainfall - Runoff Simulation System of JinWie Watershed using GIS based HEC-HMS Model (GIS 기반의 HEC - HMS를 이용한 진위천 유역의 강우-유출모형 구성)

  • Kim, Sang-Ho;Park, Min-Ji;Kang, Soo-Man;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.119-128
    • /
    • 2006
  • The purpose of this study is to prepare input data for FIA (flood inundation analysis) and FDA (flood damage assessment) through rainfall-runoff simulation by HEC-HMS model. For Jinwie watershed ($737.7km^2$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. The results will be used for river routing and inundation propagation analysis for various flood scenarios.

  • PDF