• Title/Summary/Keyword: HDD slider

Search Result 78, Processing Time 0.024 seconds

Dynamic Characteristics of HDD Slider by Perturbed Finite Element Method (교란 유한요소법을 이용한 하드 디스크 슬라이더의 동특성 해석)

  • Hwang Pyung;Khan Polina V.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.143-148
    • /
    • 2004
  • The numerical analysis of the hard disk drive slider is presented. The pressure distribution was calculated using the finite element method. The generalized Reynolds equation was applied in order to include the gas rarefaction effect. The balance of the air bearing force and preload force was considered. The characteristics of the small vibrations near the equilibrium were studied using the perturbation method. Triangular mesh with variable element size was employed to model the two-rail slider. The flying height, pitching angle, rolling angle, stiffness and damping of the two-rail slider were calculated for radial position changing from the inner radius to the outer radius and for a wide range of the slider crown values. It was found that the flying height, pitching angle and rolling angle were increased with radial position while the stiffness and damping coefficients were decreased. The higher values of crown resulted in increased flying height, pitching angle and damping and decreased stiffness.

  • PDF

Measurement of the Flying Characteristics of HDD Slider Air Bearing Using AE Signal (AE 신호를 이용한 HDD 슬라이더 공기베어링의 부상상태 측정)

  • 김재직;정태건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.97-101
    • /
    • 2000
  • The AE measurement is one of the most convenient methods for detecting contacts between slider disk. The AE method has been widely used in the investigation of the tribology of sliding interfaces due to the convenience of using AE sensor. In this study, we examined the relationship between the AE signal and the flying height of a slider. We tried to know the influence of the disk velocity on the AE rms signal by using the AE measurement system. The experiment also gives the relationship between the take-off velocity and the disk surface state. To investigate the behavior of the slider further, the variances of the AE signal are analyzed. The results about a subambient pressure slider indicate that the increase in the magnitude of AE rms signal does not necessarily mean the slider/disk contacts.

  • PDF

Measurement of the Flying Characteristics of HDD Slider Air Bearing Using AE Signal (AE 신호를 이용한 HDD 슬라이더 공기베어링의 부상상태 측정)

  • Kim, Jae-Jic;Jeong, Tae-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1391-1399
    • /
    • 2001
  • The AE measurement is one of the most convenient methods for detecting contacts between the slider and the disk. The AE method has been widely used in the investigation of the tribology of sliding interfaces due to its convenience. We examined the relationship between the AE signal and the flying height of a slider. We investigated the influence of the disk linear velocity on the AE rms signal by using the AE measurement system. The experiment also gives the relationship between the take-off velocity and the disk surface conditions. To investigate the behavior of the slider further, the variances of the AE signals are analyzed. The experimental results indicate that the increase in the magnitude of the AE rms signal does not necessarily mean the slider/disk contacts.

Effect of Relative Humidity, Disk Acceleration, and Rest Time on Tribocharge Build-up at a Slider-Disk Interface of HDD (HDD에서 상대습도, 디스크 가속도, 정지시간이 슬라이더-디스크 인터페이스의 마찰대전 발생에 미치는 영향)

  • Hwang J.;Lee D.Y.;Lee J.;Choa S.H.
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • In hard disk drives as the head to disk spacing continues to decrease to facilitate recording densities, slider disk interactions have become much more severe due to direct contact of head and disk surfaces in both start/stop and flying cases. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation and tribocharge build-up. The tribocharge build-up in the slider disk interface can cause ESD (electrostatic discharge) damage. In turn, ESD can cause severe melting damage to MR or GMR heads. The spindle speed of typical hard disk drives has increased in recent years from 5400 rpm to 15000 rpm and even higher speeds are anticipated in the near future. And the increasing disk velocity leads to increasing disk acceleration and this might affect the tribocharging phenomena of the slider/disk interface. We investigated the tribocurrent/voltage build-up generated in HDD, operating at increasing disk accelerations. In addition, we examined the effects with relative humidity conditions and rest time. We found that the tribocurrent/voltage was generated during pico-slider/disk interaction and its level was about $3\sim16pA$ and $0.1\sim0.3V$, respectively. Tribocurrent/voltage build-up was reduced with increasing disk acceleration. Higher humidity conditions $(75\sim80%)$ produced lower levels tribovoltage/current. Therefore, a higher tribocharge is expected at a lower disk acceleration and lower relative humidity condition. Rest time affected the charge build-up at the slider-disk interface. The degree of tribocharge build-up increased with increasing rest time.

Design and Experiment investigation of disk bump to improve unload performance in HDD (HDD에서 언로드 성능향상을 위한 디스크 범프의 설계 및 실험 연구)

  • Lee, Hyung-Jun;Lee, Yong-Hyun;Park, Gyeong-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.833-836
    • /
    • 2007
  • Load/Unload technology has more benefits than the conventional CSS technology. However, it remains unsolved technical problem on the unloading process. While the slider climbs up the ramp at the outer edge of the disk, the possibility of the slider-disk contact by lift-off force and rebound of the slider increases. This paper focuses on no slider-disk contact. To prevent the slider-disk contact, we apply the disk bump on disk outer edge proceeding unload. Firstly, in the simulation, the bump dimension is determined by changing bump design parameters. Secondly, dynamic stability of slider have to be checked on disk bump before unload analysis, and unload analysis is performed by applying stable bump shapes to unload simulation. Thirdly, we select optimal bump shape to improve unload performance by unload analysis. Finally, in the experiment, the disk bump is mechanically manufactured by pressing disk surface using diamond tip. That is variously processed by changing pressing pressure. After confirming bump shape by nano-scanner, proper bump shape is applied to real experimental unload process. Through this investigation, we propose the optimal bump design to prevent the slider-disk contact, and then we can realize improved unloading performance.

  • PDF

Dynamics of a Pico Slider during the Ramp Loading Process (Ramp Loading 피코 슬라이더의 거동 해석)

  • Rhim Yoon-Chul;Kim Bum-Joon;Cho Kwang-Pyo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.322-329
    • /
    • 2004
  • Recently, a load/unload(L/UL) system is adopted to the hard disk drive(HDD) due to its advantages such as lower power consumption, larger data zone, simpler fabrication of disk due to no bumped parking zone, and rarer contact between slider and media. An analysis of the transient motion for the slider is very important to design an air bearing surface(ABS) of the slider to secure the stable performance of the system. During the L/UL process, however, there are several issues occurred such as contact or collision between slider and media. Sometimes this will cause the system failure. In this study, the dynamics of a pico slider during the loading process are investigated through numerical simulation using FEM analysis and experiment. Ramp profile and angular velocity of the swing arm actuator are very important parameters for the design of L/UL system to avoid collision between slider and disk.

A Dynamic Simulation of the Slider in HDD (하드디스크 슬라이더의 동적수치해석)

  • 김도완;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.295-301
    • /
    • 2000
  • The dynamic simulation of slider in hard disk drive is performed using Factored Implicit Finite Difference method. The modified Reynolds equation with Fukui and Kaneko model is employed as a governing equation. Equations of motion for the slider of three degrees of freedom are solved simultaneously with the modified Reynolds equation. The transient responses of the slider for disk step bumps and slider impulse forces are shown for various cases and are compared for the iteration algorithm and new algorithm.

A Flying State Analysis of HDD Head Slider by Using An Optimization Technique (최적화 기법을 이용한 HDD용 헤드 슬라이더의 부상상태 해석)

  • 윤상준;김존관;최동훈;이재헌;김광식
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.26-34
    • /
    • 1992
  • This paper suggests a method to predict the flying state of the head slider in a hard disk drive (HDD) by using an optimization technique. The modified Reynolds equation for the hydrodynamic lubrication theory under the slip flow condition is used to describe the air-bearing system and a Finite Volume Method (FVM) is applied to solve the equation. Especially, Augmented Lagrange Multiplier (ALM) method is employed to find the minimum flying height, the pitch angle and the roll angle of the slider, which is shown to be faster and more general than the conventional update schemes. By using the proposed method, the variations of the flying state are analyzed as a function of the slider position in the direction of the disk radius for various disk velocities and skew angles.

Study on Scratch Characteristic of HDD due to Slider Slap (슬라이더 슬랩에 의한 하드디스크의 표면 스크래치 특성에 관한 연구)

  • Shin, Il-Sup;Kim, Hyun-Joon;Kim, Dae-Eun;Yoo, Jin-Gyoo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • Reliability of a hard disk drive depends on the head disk interface (HDI) characteristics. Particularly, the disk media and the head can be damaged due to contact between the two components during operation. The contact may occur due to particles being introduced into the disk/slider interface or due to direct contact between the slider and the disk. Such contacts may be induced by external vibration or abnormal operation of the HDI. In this work the characteristics of scratches generated on the disk surface were investigated. The scratches were generated by impacting the hard disk. The type of scratches was analyzed with respect to their shape and dimensions.

  • PDF

Optimization of the head/media interface in HDD considering the load/unload velocity profiles (HDD로드-언로드 속도를 고려한 헤드/미디어 인터페이스 특성 최적화)

  • Kang, Tae-Sik;Kim, Do-Wan;Jeong, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.902-905
    • /
    • 2003
  • It's general a trend to use the load/unload mechanism in the small form factor HDD, like 2.5", 1.8" and 1.0". The load/unload mechanism has tittle opportunity of head/media contact during the disk spin-up and down. However, the load/unload mechanism needs the precise integration technology with slider, suspension ramp, load/unload velocity and so on, and all of these components should be designed simultaneously, not an individually. In this paper, we measured the load/unload velocity in the drive level, and executed the load/unload dynamics with this velocity profiles. We could find the current load/unload mechanism suitable to the long load/unload test.

  • PDF