• Title/Summary/Keyword: HDAC6

Search Result 56, Processing Time 0.023 seconds

KR-39038, a Novel GRK5 Inhibitor, Attenuates Cardiac Hypertrophy and Improves Cardiac Function in Heart Failure

  • Lee, Jeong Hyun;Seo, Ho Won;Ryu, Jae Yong;Lim, Chae Jo;Yi, Kyu Yang;Oh, Kwang-Seok;Lee, Byung Ho
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.482-489
    • /
    • 2020
  • G protein-coupled receptor kinase 5 (GRK5) has been considered as a potential target for the treatment of heart failure as it has been reported to be an important regulator of pathological cardiac hypertrophy. To discover novel scaffolds that selectively inhibit GRK5, we have identified a novel small molecule inhibitor of GRK5, KR-39038 [7-((3-((4-((3-aminopropyl)amino)butyl)amino)propyl)amino)-2-(2-chlorophenyl)-6-fluoroquinazolin-4(3H)-one]. KR-39038 exhibited potent inhibitory activity (IC50 value=0.02 µM) against GRK5 and significantly inhibited angiotensin II-induced cellular hypertrophy and HDAC5 phosphorylation in neonatal cardiomyocytes. In the pressure overload-induced cardiac hypertrophy mouse model, the daily oral administration of KR-39038 (30 mg/kg) for 14 days showed a 43% reduction in the left ventricular weight. Besides, KR-39038 treatment (10 and 30 mg/kg/day, p.o.) showed significant preservation of cardiac function and attenuation of myocardial remodeling in a rat model of chronic heart failure following coronary artery ligation. These results suggest that potent GRK5 inhibitor could effectively attenuate both cardiac hypertrophy and dysfunction in experimental heart failure, and KR-39038 may be useful as an effective GRK5 inhibitor for pharmaceutical applications.

Trichostatin A, a Histone Deacetylase Inhibitor, Potentiated Cytotoxic Effect of ionizing Radiation in Human Head and Neck Cancer Cell Lines (히스톤탈아세틸효소 억제제 Trichostatin A에 의한 인간 두경부암 셰포주의 방사선 감수성 증강)

  • Kim, Jin Ho;Shin, Jin Hee;Chie, Eui Kyu;Wu, Hong-Gyun;Kim, Jae Sung;Kim, Il Han;Ha, Sung Whan;Park, Charn Il;Kang, Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.138-141
    • /
    • 2004
  • Purpose : We have previously reported that human glioblastoma cells are sensitized to radiation-induced death after their exposure to trichostatin A (TSA), a histone deacetylase inhibitor (HDAC-1), prior to the irradiation. We aimed to measure the magnitude of the radiosensitizing effect of TSA in human head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines, HN-3 and HN-9, were exposed to 0, 50, 100, and 200 nM TSA for 18 hr prior to irradiation. Then, the TSA-treated cells were irradiated with 0, 2, 4, 6, and 8 Gy, and cell survival was measured by clonogenic assay. Results : Pre-irradiation exposure to TSA was found to radiosensitize HN-3 and HN-9 cell lines. In HN-9 cells, the fraction surviving after 2 Gy (SF2) was significantly reduced by treatment of TSA at concentration as low as 50 nM. However, a treatment with 200 nM TSA was required to significantly decrease SF2 in the HN-3 cell line. SER of pre-irradiation treatment with 200 nM TSA was 1.84 in HN-3 and 7.24 in HN-9, respectively. Conclusions : Our results clearly showed that human head and neck cancer cell lines can be sensitized to ionizing radiation by pre-irradiation inhibition of histone deacetylase (HDAC) using TSA, and that this potentiation might well be a general phenomenon.

Epstein-Barr Virus-infected Akata Cells Are Sensitive to Histone Deacetylase Inhibitor TSA-provoked Apoptosis

  • Kook, Sung-Ho;Son, Young-Ok;Han, Seong-Kyu;Lee, Hyung-Soon;Kim, Beom-Tae;Jang, Yong-Suk;Choi, Ki-Choon;Lee, Keun-Soo;Kim, So-Soon;Lim, Ji-Young;Jeon, Young-Mi;Kim, Jong-Ghee;Lee, Jeong-Chae
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.755-762
    • /
    • 2005
  • Epstein-Barr virus (EBV) infects more than 90% of the world's population and has a potential oncogenic nature. A histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), has shown potential ability in cancer chemoprevention and treatment, but its effect on EBV-infected Akata cells has not been examined. This study investigated the effect of TSA on the proliferation and apoptosis of the cells. TSA inhibited cell growth and induced cytotoxicity in the EBV infected Akata cells. TSA treatment sensitively induced apoptosis in the cell, which was demonstrated by the increased number of positively stained cells in the TUNEL assay, the migration of many cells to the sub-$G_0/G_1$ phase in flow cytometric analysis, and the ladder formation of genomic DNA. Western blot analysis showed that caspase-dependent pathways are involved in the TSA-induced apoptosis of EBV-infected Akata cells. Overall, this study shows that EBV-infected B lymphomas are quite sensitive to TSA-provoked apoptosis.

Epigenomic Alteration in Replicative Senescent-mesenchymal Stem Cells (중간엽줄기세포의 노화에 따른 후생유전학적 변화)

  • Oh, Youn Seo;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.724-731
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are characterized by their multipotency capacity, which allows them to differentiate into diverse cell types (bone, cartilage, fat, tendon, and neuron-like cells) and secrete a variety of trophic factors (ANG, FGF-2, HGF, IGF-1, PIGF, SDF-1α, TGF-β, and VEGF). MSCs can be easily isolated from human bone-marrow, fat, and umbilical-cord tissues. These features indicate that MSCs might be of use in stem-cell therapy. However, MSCs undergo cellular senescence during long-term expansion, and this is accompanied by functional declines in stem-cell potency. In the human body, because of their senescence and declines in their microenvironmental niches stem cells fail to maintain tissue homeostasis, and as a result, senescent cells accumulate in tissues. This can lead to age-related diseases, including degenerative disorders and cancers. Recent studies suggest that the number of histone modifications to stem cells’ genomes and aberrant alterations to their DNA methylation increase as stem cells progress into senescence. These epigenetic alterations have been partly reversed with treatments in which DNA methyltransferase (DNMT) inhibitors or histone deacetylase (HDAC) inhibitors are introduced into replicative senescent-MSCs. This review focuses on epigenetic alteration in replicative senescent-MSCs and explains how epigenetic modifications are widely associated with stem-cell senescences such as differentiation, proliferation, migration, calcium signaling, and apoptosis.

UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer

  • Kim, Min Jun;Lee, Han Ju;Choi, Mee Young;Kang, Sang Soo;Kim, Yoon Sook;Shin, Jeong Kyu;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.146-159
    • /
    • 2021
  • DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.

RNA helicase DEAD-box-5 is involved in R-loop dynamics of preimplantation embryos

  • Hyeonji Lee;Dong Wook Han;Seonho Yoo;Ohbeom Kwon;Hyeonwoo La;Chanhyeok Park;Heeji Lee;Kiye Kang;Sang Jun Uhm;Hyuk Song;Jeong Tae Do;Youngsok Choi;Kwonho Hong
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1021-1030
    • /
    • 2024
  • Objective: R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. Methods: In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. Results: We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. Conclusion: These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.