• Title/Summary/Keyword: HDAC inhibitors

Search Result 68, Processing Time 0.022 seconds

3D-QSAR and Molecular Docking Studies on Benzotriazoles as Antiproliferative Agents and Histone Deacetylase Inhibitors

  • Li, Xiaolin;Fu, Jie;Shi, Wei;Luo, Yin;Zhang, Xiaowei;Zhu, Hailiang;Yu, Hongxia
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2387-2393
    • /
    • 2013
  • Benzotriazole is an important synthetic auxiliary for potential clinical applications. A series of benzotriazoles as potential antiproliferative agents by inhibiting histone deacetylase (HDAC) were recently reported. Three-dimensional quantitative structure-activity relationship (3D-QSAR), including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), were performed to elucidate the 3D structural features required for the antiproliferative activity. The results of both ligand-based CoMFA model ($q^2=0.647$, $r^2=0.968$, ${r^2}_{pred}=0.687$) and CoMSIA model ($q^2=0.685$, $r^2=0.928$, ${r^2}_{pred}=0.555$) demonstrated the highly statistical significance and good predictive ability. The results generated from CoMFA and CoMSIA provided important information about the structural characteristics influence inhibitory potency. In addition, docking analysis was applied to clarify the binding modes between the ligands and the receptor HDAC. The information obtained from this study could provide some instructions for the further development of potent antiproliferative agents and HDAC inhibitors.

Inhibition of Class I Histone Deacetylase Enhances Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells

  • Yukyeong Lee;Seung-Won Lee;Dahee Jeong;Hye Jeong Lee;Na Young Choi;Jin Seok Bang;Seokbeom Ham;Kinarm, Ko
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Background and Objectives: Spermatogonial stem cells (SSCs) are the most primitive cells in spermatogenesis and are the only adult stem cells capable of passing on the genome of a given species to the next generation. SSCs are the only adult stem cells known to exhibit high Oct4 expression and can be induced to self-reprogram into pluripotent cells depending on culture conditions. Epigenetic modulation is well known to be involved in the induction of pluripotency of somatic cells. However, epigenetic modulation in self-reprogramming of SSCs into pluripotent cells has not been studied. Methods and Results: In this study, we examined the involvement of epigenetic modulation by assessing whether selfreprogramming of SSCs is enhanced by treatment with epigenetic modulators. We found that second-generation selective class I HDAC inhibitors increased SSC reprogramming efficiency, whereas non-selective HDAC inhibitors had no effect. Conclusions: We showed that pluripotent stem cells derived from adult SSCs by treatment with small molecules with epigenetic modulator functions exhibit pluripotency in vitro and in vivo. Our results suggest that the mechanism of SSC reprogramming by epigenetic modulator can be used for important applications in epigenetic reprogramming research.

A novel HDAC6 inhibitor, CKD-504, is effective in treating preclinical models of huntington's disease

  • Endan Li;Jiwoo Choi;Hye-Ri Sim;Jiyeon Kim;Jae Hyun Jun;Jangbeen Kyung;Nina Ha;Semi Kim;Keun Ho Ryu;Seung Soo Chung;Hyun Sook Kim;Sungsu Lee;Wongi Seol;Jihwan Song
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.178-183
    • /
    • 2023
  • Huntington's disease (HD) is a neurodegenerative disorder, of which pathogenesis is caused by a polyglutamine expansion in the amino-terminus of huntingtin gene that resulted in the aggregation of mutant HTT proteins. HD is characterized by progressive motor dysfunction, cognitive impairment and neuropsychiatric disturbances. Histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase, has been shown to induce transport- and release-defect phenotypes in HD models, whilst treatment with HDAC6 inhibitors ameliorates the phenotypic effects of HD by increasing the levels of α-tubulin acetylation, as well as decreasing the accumulation of mutant huntingtin (mHTT) aggregates, suggesting HDAC6 inhibitor as a HD therapeutics. In this study, we employed in vitro neural stem cell (NSC) model and in vivo YAC128 transgenic (TG) mouse model of HD to test the effect of a novel HDAC6 selective inhibitor, CKD-504, developed by Chong Kun Dang (CKD Pharmaceutical Corp., Korea). We found that treatment of CKD-504 increased tubulin acetylation, microtubule stabilization, axonal transport, and the decrease of mutant huntingtin protein in vitro. From in vivo study, we observed CKD-504 improved the pathology of Huntington's disease: alleviated behavioral deficits, increased axonal transport and number of neurons, restored synaptic function in corticostriatal (CS) circuit, reduced mHTT accumulation, inflammation and tau hyperphosphorylation in YAC128 TG mouse model. These novel results highlight CKD-504 as a potential therapeutic strategy in HD.

Modulacon of Cell Cycle Control by Histone Deacetylase Inhibitor Trichostatin A in A549 Human Non-small Cell Lung Cancer Cells (인체폐암세포 A549의 세포주기 조절인자에 미치는 histone deacetylase inhibitor trichostatin A의 영향)

  • Hwang Ji Won;Kim Young Min;Hong Su Hyun;Choi Byung Tae;Lee Won Ho;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.726-733
    • /
    • 2005
  • Histone deacetylase (HDAC) inhibitors target key steps of tumor development. They inhibit proliferation, induce differentiation and/or apoptotic cell death, and exhibit potent antimetastatic and antiangiogenic properties in cancer cells in vitro and in vivo. Although they are emerging as a promising new treatment strategy in malignancy, how they exert their effect on human non-small cell lung cancer cells is as yet unclear. The present study was undertaken to investiate the underlying mechanism of a HDAC inhibitor trichostatin A (TSA)-induced growth arrest and its effect on the cell cycle control gene products in a human lung carcinoma cell line A549. TSA treaoent induced the growth inhibition and morphological changes in a concentration-dependent manner. Treatment of A549 cells with TSA resulted in a concentration-dependent increased G1 (under 100 ng/ml) and/or G2/M (200 ng/ml) cell population of the cell cycle as determined by flow cytometry Moreover, 200 ng/ml TSA treatment significantly induced the population of sub-G1 cells (23.0 fold of control). This anti-proliferative effect of TSA was accompanied by a marked inhibition of cyclins, positive regulators of cell cycle progression, and cyclin-dependent kinases (Cdks) expression and concomitant induction of tumor suppressor p53 and Cdk inhibitors such as p21 and p27 Although further studies are needed, these findings provide important insights into the possible molecular mechanisms of the anti-cancer activity of TSA in human lung carcinoma cells.

Pharmacological Analysis of Vorinostat Analogues as Potential Anti-tumor Agents Targeting Human Histone Deacetylases: an Epigenetic Treatment Stratagem for Cancers

  • Praseetha, Sugathan;Bandaru, Srinivas;Nayarisseri, Anuraj;Sureshkumar, Sivanpillai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1571-1576
    • /
    • 2016
  • Alteration of the acetylation status of chromatin and other non-histone proteins by HDAC inhibitors has evolved as an excellent epigenetic strategy in treatment of cancers. The present study was sought to identify compounds with positive pharmacological profiles targeting HDAC1. Analogues of Vorinostat synthesized by Cai et al, 2015 formed the test compounds for the present pharmacological evaluation. Hydroxamte analogue 6H showed superior pharmacological profile in comparison to all the compounds in the analogue dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify compounds with even better high affinity and pharmacological profile than 6H and Vorinostat, virtual screening was performed. A total of 83 compounds similar to Vorinostat and 154 compounds akin to analogue 6H were retrieved. SCHEMBL15675695 (PubCid: 15739209) and AKOS019005527 (PubCid: 80442147) similar to Vorinostat and 6H, were the best docked compounds among the virtually screened compounds. However, in spite of having good affinity, none of the virtually screened compounds had better affinity than that of 6H. In addition SCHEMBL15675695 was predicted to be a carcinogen while AKOS019005527 is Ames toxic. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report Vorinostat hydroxamate analogue 6H to be a potential candidate for HDAC inhibition in treatment of cancers through an epigenetic strategy.

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice (항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과)

  • Choi, Yun-Jung;Min, Gyesik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

Histone deacetylase inhibition attenuates hepatic steatosis in rats with experimental Cushing's syndrome

  • Kim, Mina;Lee, Hae-Ahm;Cho, Hyun-Min;Kang, Seol-Hee;Lee, Eunjo;Kim, In Kyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.23-33
    • /
    • 2018
  • Cushing's syndrome (CS) is a collection of symptoms caused by prolonged exposure to excess cortisol. Chronically elevated glucocorticoid (GC) levels contribute to hepatic steatosis. We hypothesized that histone deacetylase inhibitors (HDACi) could attenuate hepatic steatosis through glucocorticoid receptor (GR) acetylation in experimental CS. To induce CS, we administered adrenocorticotropic hormone (ACTH; 40 ng/kg/day) to Sprague-Dawley rats by subcutaneous infusion with osmotic mini-pumps. We administered the HDACi, sodium valproate (VPA; 0.71% w/v), in the drinking water. Treatment with the HDACi decreased steatosis and the expression of lipogenic genes in the livers of CS rats. The enrichment of GR at the promoters of the lipogenic genes, such as acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), and sterol regulatory element binding protein 1c (Srebp1c), was markedly decreased by VPA. Pan-HDACi and an HDAC class I-specific inhibitor, but not an HDAC class II a-specific inhibitor, attenuated dexamethasone (DEX)-induced lipogenesis in HepG2 cells. The transcriptional activity of Fasn was decreased by pretreatment with VPA. In addition, pretreatment with VPA decreased DEX-induced binding of GR to the glucocorticoid response element (GRE). Treatment with VPA increased the acetylation of GR in ACTH-infused rats and DEX-induced HepG2 cells. Taken together, these results indicate that HDAC inhibition attenuates hepatic steatosis through GR acetylation in experimental CS.

Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells. (인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Byung-Tae;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.336-343
    • /
    • 2008
  • Histone deacetylases (HDACs) inhibitors have emerged as the accessory therapeutic agents for various human cancers, since they can block the activity of specific HDACs, restore the expression of some tumor suppressor genes and induce cell differentiation, cell cycle arrest and apoptosis in vitro and in vivo. In the present study, we investigated that the effect of trichostatin A (TSA), an HDAC inhibitor, on the cell growth and apoptosis, and its effect on the nuclear factor-kappaB $(NF-{\kappa}B)$ activity in 267B1 human prostate epithelial cells. Exposure of 267B1 cells to TSA resulted in growth inhibition and apoptosis induction in and dose-dependent manners as measured by fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. TSA treatment inhibited the levels of IAP family members such as c-IAP-1 and c-IAP-2 and induced the proteolytic activation of caspase-3, -8 and -9, which were associated with concomitant degradation of poly (ADP-ribose)-polymerase, ${\beta}-catenin$ and laminin B proteins. The increase in apoptosis by TSA was connected with the translocation of $NF-{\kappa}B$ from cytosol to nucleus, increase of the DNA binding as well as promoter activity of $NF-{\kappa}B$, and degradation of cytosolic inhibitor of KappaB $(I{\kappa}B)-{\alpha}$ protein. We therefore concluded that TSA demonstrated anti-proliferative and apoptosis-inducing effects on 267B1 cells in vitro, and that the activation of caspases and $NF-{\kappa}B$ may play important roles in its mechanism of action. Although further studies are needed, these findings provided important insights into the possible molecular mechanisms of the anti-cancer activity of TSA.

Cap-Modified Hydroxamate Analogues as Histone Deacetylases Inhibitors and Antitumor Agents

  • Zhang, Qing-Wei;Feng, Juan;Li, Jian-Qi
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.129-134
    • /
    • 2014
  • Two series of SAHA-liked hydroxamate analogues were designed, synthesized and evaluated for their biological activities against nuclear HDACs. Compounds of Series I were found to be very effective inhibitors of cancer cell growth in the PC-3, Hut78, K562 and Jurkat E6-1 cancer cell lines with mean $IC_{50}$ values from $0.54{\mu}M$ (Ic, Jurkat E6-1) to $7.73{\mu}M$ (Ib, K562), indicating that they are cell permeable and the benzimidazolyl-based ligands are flexible enough to occupy the binding site of HDAC.