• 제목/요약/키워드: HDAC inhibitors

검색결과 68건 처리시간 0.022초

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Joung, Ki-Eun;Min, Kyung-Nan;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.81-88
    • /
    • 2012
  • Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

Development of radiolabelled histone deacetylase inhibitors for PET imaging study

  • Hee-Kwon Kim
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.165-170
    • /
    • 2020
  • Histone Deacetylases (HDACs) are enzymes that have control gene expression regulation and cell state. In additions, inhibitions of HDACs are associated with growth arrest, differentiation, or apoptosis of tumor cell. Thus HDAC inhibition is one of the interesting biological targets. A variety of HDAC inhibitors has been developed by many scientists, and some of chemical structures related with HDAC inhibitors were modified to give radiolabeled HDAC inhibitors for positron emission tomography (PET) study. In this highlight review, the development of radiolabeled HDAC inhibitors for PET study are described.

Histone deacetylation effects of the CYP1A1 promoter activity, proliferation and apoptosis of cells in hepatic, prostate and breast cancer cells

  • K.N. Min;K.E. Joung;M.J. Cho;J.Y. An;Kim, D.K.;Y.Y. Sheen
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.91-91
    • /
    • 2003
  • We have studied the mechanism of action of TCDD on CYP1A1 promoter activity in both Hepa I and MCF-7 cells using transient transfection system with plAl-Luc reporter gene. When HDAC inhibitors, such as trichostatin A, HC toxin and a novel HDAC inhibitor, IN2001 were cotreated with TCDD to the cells transfected with plAl-Luc reporter gene, the basal promoter activity of CYP1A1 was increased by HDAC inhibitors. Also, in MCF-7 human breast cancer cells, HDAC inhibitors, such as IN2001 and trichostatin A increased the basal activity of CYP1A1 promoter but TCDD stimulated CYP1A1 promoter activity was not changed by HDAC inhibitors. And, in stably-transfected Hepa I cells with plAl-Luc, HDAC inhibitors increased the basal promoter activity only.

  • PDF

Differentiation and upregulation of heat shock protein 70 induced by a subset of histone deacetylase inhibitors in mouse and human embryonic stem cells

  • Park, Jeong-A;Kim, Young-Eun;Seok, Hyun-Jeong;Park, Woo-Youn;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • 제44권3호
    • /
    • pp.176-181
    • /
    • 2011
  • Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heat-shock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.

Histone deacetylation effects of the CYP1A1 promoter activity, proliferation and apoptosis of cells in hepatic, prostate and breast cancer cells

  • K. N. Min;K. E. Joung;M. J. Cho;J. Y. An;Kim, D. K.;Y. Y. Sheen
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.181-181
    • /
    • 2003
  • We have studied the mechanism of action of TCDD on CYP1A1 promoter activity in both Hepa Ⅰ and MCF-7 cells using transient transfection system with p1A1-Luc reporter gene. When HDAC inhibitors, such as trichostatin A, HC toxin and a novel HDAC inhibitor, IN2001 were cotreated with TCDD to the cells transfected with plAt-Luc reporter gene, the basal promoter activity of CYP1A1 was increased by HBAC inhibitors. Also, in MCF-7 human breast cancer cells, HDAC inhibitors, such as IN2001 and trichostatin A increased the basal activity of CYP1A1 promoter but TCDD stimulated CYP1A1 promoter activity was not changed by HDAC inhibitors. And, in stably-transfected Hepa Ⅰ cells with p1A1-Luc, HDAC inhibitors increased the basal promoter activity only Also, we have investigated the effects of HDAC inhibitors on the human breast and prostate cancer cells in terms of cell proliferation and apoptosis based on SRB assay. IN2001 as well as trichostatin A inhibited the MCF-7, MDA-MB-231, MDA-MB-468, T47D, ZR75-1, PC3 cell growth dose-dependently. The growth inhibition of these cells with HDAC inhibitors was associated with profound morphological change, which suggests the HDAC inhibitors induced apoptosis of cells. The result of cell cycle analysis after 24h exposure of IN2001 showed G2/M cell cycle arrest in MCF-7 cells and apoptosis in T47D and MDA-MB-231 cells.

  • PDF

Classification of HDAC8 Inhibitors and Non-Inhibitors Using Support Vector Machines

  • Cao, Guang Ping;Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • 제4권1호
    • /
    • pp.2.1-2.7
    • /
    • 2012
  • Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl groups from ${\varepsilon}$-N-acetyl lysine amino acids of histone proteins. Their action is opposite to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of new and potential HDAC inhibitors are necessary in the effective treatment of cancer. Materials and Methods: This study proposed a method using support vector machine (SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors was calculated for all compounds in the dataset using ADRIANA. Code of Molecular Networks. Different kernel functions available from SVM Tools of free support vector machine software and training and test sets of varying size were used in model generation and validation. Results and Conclusion: The best model obtained using kernel functions has shown 75% of accuracy on test set prediction. The other models have also displayed good prediction over the test set compounds. The results of this study can be used as simple and effective filters in the drug discovery process.

New HDAC inhibitor, IN2001 induces apoptosis/cell cycle arrest in human breast cancer cells

  • Joung, Ki-Eun;Min, Kyung-Nan;Cho, Min-Jung;An, Jin-Young;Kim, Dae-Ki;Sheen, Yhun-Yhong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.90-90
    • /
    • 2003
  • The acetylation of histone is one of the mechanisms involved in the regulation of gene expression and is tightly controlled by two core enzymes, histone acetyltransferase (HAT) and deacetylase (HDAC). There are several reports that imbalance of HAT and HDAC activity is associated with abnormal behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, an increasing number of structurally diverse HDAC inhibitors have been identified that inhibit proliferation and induce differentiation and/or apoptosis of tumor cells in vivo and in vitro. In this study, we have investigated the effects of novel HDAC inhibitors, IN2001 on ER positive and ER negative human breast cancer cell lines. The growth inhibition, cell cycle arrest and apoptosis of cells by HDAC inhibitors were determined using SRB assay, DNA fragmentation, and flow cytometry. We found that IN 2001 as well as Trichostatin A inhibited cell growth dose-dependently in both ER positive and ER negative human breast cancer cell lines. The growth inhibition with HDAC inhibitors was associated with profound morphological change. The result of cell cycle analysis after 24 h exposure of IN2001 showed G2-M cell cycle arrest in MCF-7 cell and apoptosis in T47D and MDA-MB-231 cell. In summary, IN2001 has antiproliferative effect on human breast cancer cells regardless of the expression of estrogen receptor. These findings heights the possibility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of breast cancer.

  • PDF

New HDAC inhibitor, IN2001 induces apoptosis/cell cycle arrest in human breast cancer cells

  • Euno, Joung-Ki;Nan, Min-Kyung;Jung, Cho-Min;Young, An-Jin;Kim, -Dae-Ki;Yhong, Sheen-Yhun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.180-180
    • /
    • 2003
  • The acetylation of histone is one of the mechanisms involved in the regulation of gene expression and is tightly controlled by two core enzymes, histone acetyltransferase (HAT) and deacetylase (HDAC). There are several reports that imbalance of HAT and HDAC activity is associated with abnormal behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, an increasing number of structurally diverse HDAC inhibitors have been identified that inhibit proliferation and induce differentiation and/or apoptosis of tumor cells in vivo and in vitro. In this study, we have investigated the effects of novel HDAC inhibitors, IN2001 on ER positive and ER negative human breast cancer cell lines. The growth inhibition, cell cycle arrest and apoptosis of cells by HDAC inhibitors were determined using SRB assay, DNA fragmentation, and flow cytometry. We found that IN 2001 as well as Trichostatin A inhibited cell growth dose-dependently in both ER Positive and ER negative human breast cancer cell lines. The growth inhibition with HDAC inhibitors was associated with profound morphological change. The result of cell cycle analysis after 24 h exposure of IN2001 showed G2-M cell cycle arrest in MCF-7 cell and apoptosis in T47B and MDA-MB-231 cell. In summary, IN2001 has antiproliferative effect on human breast cancer cells regardless of the expression of estrogen receptor. These findings heights the possibility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of breast cancer.

  • PDF

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

IL-4 and HDAC Inhibitors Suppress Cyclooxygenase-2 Expression in Human Follicular Dendritic Cells

  • Cho, Whajung;Hong, Seung Hee;Choe, Jongseon
    • IMMUNE NETWORK
    • /
    • 제13권2호
    • /
    • pp.75-79
    • /
    • 2013
  • Evidence for immunoregulatory roles of prostaglandins (PGs) is accumulating. Since our observation of PG production by human follicular dendritic cells (FDCs), we investigated the regulatory mechanism of PG production in FDC and attempted to understand the functions of released PGs in the responses of adjacent lymphocytes. Here, using FDC-like cells, HK cells, we analyzed protein expression alterations in cyclooxygenase-2 (COX-2) in the presence of IL-4 or histone deacetylase (HDAC) inhibitors. Both IL-4 and HDAC inhibitors suppressed COX-2 expression in dose-dependent manners. Their effect was specific to COX-2 and did not reach to COX-1 expression. Interestingly, HDAC inhibitors gave rise to an opposing effect on COX-2 expression in peripheral blood monocytes. Our results suggest that IL-4 may regulate COX-2 expression in FDCs by affecting chromatin remodeling and provide insight into the role of cellular interactions between T cells and FDC during the GC reaction. Given the growing interests in wide-spectrum HDAC inhibitors, the differential results on COX-2 expression in HK cells and monocytes raise cautions on their clinical use.