• Title/Summary/Keyword: HCV-RNA

Search Result 81, Processing Time 0.027 seconds

Replacement of Thymidine Phosphorylase RNA with Group I Intron of Tetrahymena thermophila by Targeted Trans-Splicing

  • Park, Young-Hee;Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.340-344
    • /
    • 2003
  • The group I intron from Tetrahymena thermophila has been demonstrated to employ splicing reactions with its substrate RNA in the trans configuration. Moreover, we have recently shown that the transsplicing group I ribozyme can replace HCV-specific transcripts with a new RNA that exerts anti-viral activity. In this study, we explored the potential use of RNA replacement for cancer treatment by developing trans-splicing group I ribozymes, which could replace tumor-associated RNAs with the RNA sequence attached to the 3' end of the ribozymes. Thymidine phosphorylase (TP) RNA was chosen as a target RNA because it is known as a valid cancer prognostic factor. By performing an RNA mapping strategy that is based on a trans-splicing ribozyme library, we first determined which regions of the TP RNA are accessible to ribozymes, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. Next, we assessed the ribozyme activities by comparing trans-splicing activities of several ribozymes that targeted different regions of the TP RNA. This assessment was performed to verify if the target site predicted to be accessible is truly the most accessible. The ribozyme that could target the most accessible site, identified by mapping studies, was the most active with high fidelity in vitro. Moreover, the specific trans-splicing ribozyme reacted with and altered the TP transcripts by transferring an intended 3' exon tag sequence onto the targeted TP RNA in mammalian cells with high fidelity. These results suggest that the Tetrahymena ribozyme can be utilized to replace TP RNAs in tumors with a new RNA harboring anti-cancer activity, which would revert the malignant phenotype.

Efficient Target Site Selection for an RNA-cleaving DNAzyme through Combinatorial Library Screening

  • Kim, Ki-Sun;Choi, Woo-Hyung;Gong, Soo-Jeong;Oh, Sang-taek;Kim, Jae-Hyun;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.657-662
    • /
    • 2006
  • Identification of accessible sites in targeted RNAs is a major limitation to the effectiveness of antisense oligonucleotides. A class of antisense oligodeoxynucleotides, known as the “10-23” DNA enzyme or DNAzyme, which is a small catalytic DNA, has been shown to efficiently cleave target RNA at purine-pyrimidine junctions in vitro. We have designed a strategy to identify accessible cleavage sites in the target RNA, which is hepatitis C virus nonstructural gene 3 (HCV NS3) RNA that encodes viral helicase and protease, from a pool of random DNAzyme library. A pool of DNAzymes of 58 nucleotides-length that possess randomized annealing arms, catalytic core sequence, and fixed 5'/3'-end flanking sequences was designed and screened for their ability to cleave the target RNA. The screening procedure, which includes binding of DNAzyme pool to the target RNA under inactive condition, selection and amplification of active DNAzymes, incubation of the selected DNAzymes with the target RNA, and target site identification on sequencing gels, identified 16 potential cleavage sites in the target RNA. Corresponding DNAzymes were constructed for the selected target sites and were tested for RNA-cleavage in terms of kinetics and accessibility. These selected DNAzymes were effective in cleaving the target RNA in the presence of $Mg^{2+}$. This strategy can be applicable to identify accessible sites in any target RNA for antisense oligonucleotides-based gene inactivation methods.

Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity

  • Kang, Sang-Min;Park, Ji-Young;Han, Hee-Jeong;Song, Byeong-Min;Tark, Dongseob;Choi, Byeong-Sun;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.702-717
    • /
    • 2022
  • Hepatitis C virus (HCV) infection can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV employs diverse strategies to evade host antiviral innate immune responses to mediate a persistent infection. In the present study, we show that nonstructural protein 5A (NS5A) interacts with an NF-κB inhibitor immunomodulatory kinase, IKKε, and subsequently downregulates beta interferon (IFN-β) promoter activity. We further demonstrate that NS5A inhibits DDX3-mediated IKKε and interferon regulatory factor 3 (IRF3) phosphorylation. We also note that hyperphosphorylation of NS5A mediates protein interplay between NS5A and IKKε, thereby contributing to NS5A mediated modulation of IFN-β signaling. Lastly, NS5A inhibits IKKε-dependent p65 phosphorylation and NF-κB activation. Based on these findings, we propose NS5A as a novel regulator of IFN signaling events, specifically by inhibiting IKKε downstream signaling cascades through its interaction with IKKε. Taken together, these data suggest an additional mechanistic means by which HCV modulates host antiviral innate immune responses to promote persistent viral infection.

Antiviral Efficacy of a Short PNA Targeting microRNA-122 Using Galactosylated Cationic Liposome as a Carrier for the Delivery of the PNA-DNA Hybrid to Hepatocytes

  • Kim, Hyoseon;Lee, Kwang Hyun;Kim, Kyung Bo;Park, Yong Serk;Kim, Keun-Sik;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.735-742
    • /
    • 2013
  • Peptide nucleic acids (PNAs) that bind to complementary nucleic acid sequences with extraordinarily high affinity and sequence specificity can be used as antisense oligonucleotides against microRNAs, namely antagomir PNAs. However, methods for efficient cellular delivery must be developed for effective use of PNAs as therapeutic agents. Here, we demonstrate that antagomir PNAs can be delivered to hepatic cells by complementary DNA oligonucleotide and cationic liposomes containing galactosylated ceramide and a novel cationic lipid, DMKE (O,O'-dimyristyl-N-lysyl glutamate), through glycoprotein-mediated endocytosis. An antagomir PNA was designed to target miR-122, which is required for translation of the hepatitis C virus (HCV) genome in hepatocytes, and was hybridized to a DNA oligonucleotide for complexation with cationic liposome. The PNA-DNA hybrid molecules were efficiently internalized into hepatic cells by complexing with the galactosylated cationic liposome in vitro. Galactosylation of liposome significantly enhanced both lipoplex cell binding and PNA delivery to the hepatic cells. After 4-h incubation with galactosylated lipoplexes, PNAs were efficiently delivered into hepatic cells and HCV genome translation was suppressed more than 70% through sequestration of miR-122 in cytoplasm. PNAs were readily released from the PNA-DNA hybrid in the low pH environment of the endosome. The present study indicates that transfection of PNA-DNA hybrid molecules using galactosylated cationic liposomes can be used as an efficient non-viral carrier for antagomir PNAs targeted to hepatocytes.

Hepatitis C Virus Nonstructural 5A Protein (HCV-NS5A) Inhibits Hepatocyte Apoptosis through the NF-κb/miR-503/bcl-2 Pathway

  • Xie, Zhengyuan;Xiao, Zhihua;Wang, Fenfen
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor $(TNF)-{\alpha}$. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of $NF-{\kappa}B$ and miR-503. We found that overexpression of NS5A inhibited $TNF-{\alpha}$-induced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the $TNF-{\alpha}$ induced Hep-mock cells was significantly less than the viability of the $TNF-{\alpha}$ induced Hep-NS5A cells, which demonstrates that NS5A inhibited $TNF-{\alpha}$-induced HepG2 cell apoptosis. Under $TNF-{\alpha}$ treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited $TNF{\alpha}$-induced $NF-{\kappa}B$ activation and $NF-{\kappa}B$ regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse $TNF-{\alpha}$-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits $NF-{\kappa}B$ activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.

Efficacy and Safety of Daclatasvir and Asunaprevir Combination Therapy in Elderly Chronic Hepatitis C Patients (고령의 만성 C형 간염 환자에서 Daclatasvir와 Asunaprevir 병용 요법의 유효성 및 안전성 평가)

  • Park, You Kyung;Shin, Su Jin;Choi, You Ock;Choi, Hye Jung;Kang, Jin Suk;Hwangbo, Shin-Yi
    • Journal of Korean Society of Health-System Pharmacists
    • /
    • v.35 no.4
    • /
    • pp.453-462
    • /
    • 2018
  • Background : The prevalence of chronic hepatitis C virus (HCV) tends to be higher in the elderly. Pegylated interferon and ribavirin therapy (Peg-IFN/RBV) was recommended as the first-line treatment in the past decades, but this regimen showed unsatisfactory results in terms of safety and efficacy especially in elderly patients. Recently, it was demonstrated that dual therapy with daclatasvir and asunaprevir was well tolerated and led to high sustained virological response (SVR) rates, irrespective of age. We conducted a study to evaluate the efficacy and safety of daclatasvir plus asunaprevir by involving elderly patients aged above 65 years. Methods : We retrospectively analyzed clinical data from chronic hepatitis C virus (HCV) genotype 1b patients treated with daclatasvir plus asunaprevir from September 2015 to December 2016 at Seoul St. Mary's hospital. The patients were divided into two groups as elderly patients (older than 65 years) and non-elderly patients (younger than 65 years) and compared the efficacy and safety. Results : A total of 112 patients were treated with daclatasvir plus asunaprevir for chronic hepatitis C. Among them, 101 patients completed the whole treatment, and in 88 patients the amount of HCV RNA was measured after 12 weeks of treatment. There was no significant difference in SVR at 12 weeks between both the groups (p=0.68). Typically, 91.4%(32/35) of elderly patients and 94.3%(50/53) of non-elderly patients achieved SVR12. Common adverse events included elevation in transaminase level, headache, and gastrointestinal disorders. There was no statistical difference in the symptoms between the two groups. Conclusions : The combination therapy with daclatasvir plus asunaprevir exhibited similar rates of SVR12 in HCV elderly patients without leading to further adverse events compared to non-elderly patients. Therefore, it is proposed that daclatasvir plus asunaprevir therapy could be considered as an effective and safe treatment, even in patients aged over 65 years.

Identification of Hepatitis B (HBV) and C (HCV) Virus Infection among Doctors and Nurses in Tertiary Hospitals in Mongolia

  • Batbold, D.;Baigalmaa, Dovdon;Ganbaatar, B.;Chimedsuren, O.
    • Perspectives in Nursing Science
    • /
    • v.7 no.1
    • /
    • pp.50-54
    • /
    • 2010
  • The studies of M. Colombo (1989) and W. Lange (1992) showed that 30~40% of people became chronic after suffering from hepatitis B virus (HBV) and C virus (HCV) infection, and about 50% of the chronic cases transformed into primary liver cancer. There have been few studies done in Mongolia on hepatitis infection among health professionals, particularly in nurses. In a study done by Chimedsuren (8), the study showed that 19.4% of people with identified surface hepatitis B antigen (HBsAg) and antibodies to hepatitis C virus and 8% of people with the identified nucleotide of RNA for the hepatitis C virus (polymerase chain reaction) had an acute form of hepatitis C. Studies on the hepatitis virus genome damaging effect on liver cells showed that genotype 8 (A, B, C, D, E, F, G, TTV) had the most damaging effect on liver cells (Hahn and Faeka, 2007). Several studies have shown a relationship between hepatitis B virus infection and a lack of compliance regarding safety regulations and rules by medical personnel. Results of a study from the Maternal and Child Health Research Center showed that tests done to detect hepatitis B virus antigen and antibodies to C virus did not reveal anything. Both antigen and antibodies in 69% cases did not show, and separately, B virus and antibodies to hepatitis C virus were identified in 13% and 9%, respectively. Results of the tests taken from health personnel in Shastin Central Hospital showed that in 76% of the cases, the B virus antigen with C virus antibodies was not identified. In 8% of the cases, the B virus antigen was present on its own. The combination of B the virus antigen and C virus antibodies were present in 8% of nurses and doctors, respectively. 82% of the cases had negative results for the detection of a combination of B virus antigen and C virus antibodies taken from health personnel from the State Central Clinical Hospital whereas the B virus antigen and C virus antibodies by themselves were present in 7% and 14% of the cases, respectively. Combined cases of the B virus antigen and C virus antibodies were identified in 4% of the personnel. Results of the tests taken from the health personnel in the Hospital of the Ministry of Justice and Internal Affairs showed that in 79% of the cases, the B virus antigen with C virus antibodies were not identified. Separately, the B virus and antibodies to hepatitis C virus were identified in 8% and 13% of the cases, respectively.

  • PDF

Associations Between Three Common MicroRNA Polymorphisms and Hepatocellular Carcinoma Risk in Chinese

  • Hao, Yu-Xia;Wang, Jun-Ping;Zhao, Long-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6601-6604
    • /
    • 2013
  • Aim: Associations between polymorphisms in miR-146aG>C, miR-196a2C>T and miR-499A>G and risk of HCC, and interaction with HBV infection in a Chinese population, were the target of the present research. Methods: The duplex polymerase-chain-reaction with confronting-two-pair primers (PCR-RFLP) was performed to determine the genotypes of the miR-146aG>C, miR-196a2C>T and miR-499A>G genotypes. Associations of polymorphisms with the risk of HCC were estimated by conditional logistic regression analysis. Results: Drinking, family history of cancer, HBsAg and HCV were risk factors for HCC. Multivariate regression analyses showed that subjects carrying the miR-196a2 CC genotype had significantly increased risk of HCC, with an adjusted OR (95% CI) of 2.18 (1.23-3.80). In addition, cases carrying the miR-196a2 C allele had a 1.64-fold increase in the risk for HCC (95%CI=1.03-2.49). The miR-196a2 CT and TT genotypes greatly significantly increased the risk of HCC in subjects with HBV infection, with adjusted ORs (95% CI) of 2.02 (1.12-3.68) and 2.69 (1.28-5.71), respectively. Conclusion: Our results demonstrate that miR-196a2 CC genotype and C allele have an important role in HCC risk in Chinese, especially in patients with HBV infection.

Single Nucleotide Polymorphisms in miR-149 (rs2292832) and miR-101-1 (rs7536540) Are Not Associated with Hepatocellular Carcinoma in Thai Patients with Hepatitis B Virus Infection

  • Pratedrat, Pornpitra;Sopipong, Watanyoo;Makkoch, Jarika;Praianantathavorn, Kesmanee;Chuaypen, Natthaya;Tangkijvanich, Pisit;Payungporn, Sunchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6457-6461
    • /
    • 2015
  • MicroRNAs directly and indirectly influence many biological processes such as apoptosis, cell maintenance, and immune responses, impacting on tumor genesis and metastasis. They modulate gene expression at the posttranscriptional level and are associated with progression of liver disease. Hepatocellular carcinoma (HCC) is a cancer which mostly occurs in males. There are many factors affect HCC development, for example, hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV), co-infection, environmental factors including alcohol, aflatoxin consumption and host-related factors such as age, gender immune response, microRNA and single nucleotide polymorphisms (SNPs). Chronic infection with the hepatitis B virus is the major factor leading to HCC progression since it causes the liver injury. At present, there are many reports regarding the association of SNPs on miRNAs and the HCC progression. In this research, we investigated the role of miR-149 (rs2292832) and miR-101-1 (rs7536540) with HCC progression in Thai population. The study included 289 Thai subjects including 104 HCC patients, 90 patients with chronic hepatitis B virus infection (CHB) and 95 healthy control subjects. The allele and genotype of rs2292832 and rs7536540 polymorphisms were determined by TaqMan real-time PCR assay. Our results revealed no significant association between miR-149 (rs2292832) and miR-101-1 (rs7536540) and the risk of HCC in our Thai population. However, this research is the first study of miR-149 (rs2292832) and miR-101-1 (rs7536540) in HCC in Thai populations and the results need to be confirmed with a larger population.