• Title/Summary/Keyword: HCV-RNA

Search Result 81, Processing Time 0.022 seconds

Inhibition of Hepatitis C Virus (HCV) Replication by Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase (C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 활성이 유도되는 Hammerhead 리보자임에 의한 HCV 복제 억제 연구)

  • Lee, Chang-Ho;Lee, Seong-Wook
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.188-193
    • /
    • 2011
  • As a specific and effective therapeutic genetic material against hepatitis C virus (HCV) multiplication, HCV internal ribosome entry site (IRES)-targeting hammerhead ribozyme which activity is allosterically regulated by HCV regulatory protein, NS5B RNA replicase, was constructed. The allosteric ribozyme was composed of sequence of RNA aptamer to HCV NS5B, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding NS5B to the aptamer, and sequence of ribozyme targeting +382 nucleotide of HCV IRES. With real-time PCR analysis, the ribozyme was found to efficiently inhibit HCV replicon replication in cells. Of note, the allosteric ribozyme was shown to inhibit HCV replicon replication more efficiently than either HCV genome-targeting ribozyme or NS5B aptamer only. This allosteric ribozyme can be used as a lead genetic agent for the specific and effective suppression of HCV replication.

Inhibition of the Replication of Hepatitis C Virus Replicon with Nuclease-Resistant RNA Aptamers

  • Shin, Kyung-Sook;Lim, Jong-Hoon;Kim, Jung-Hye;Myung, Hee-Joon;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1634-1639
    • /
    • 2006
  • Hepatitis C virus (HCV)-encoded nonstructural protein 5B (NS5B) possesses RNA-dependent RNA polymerase activity, which is considered essential for viral proliferation. Thus, HCV NS5B is a good therapeutic target protein for the development of anti-HCV agents. In this study, we isolated two different kinds of nuclease-resistant RNA aptamers with 2'-fluoro pyrimidines against the HCV NS5B from a combinatorial RNA library with 40 nucleotide random sequences, using SELEX technology. The isolated RNA aptamers were observed to specifically and avidly bind the HCV NS5B with an apparent $K_d$ of 5 nM and 18 nM, respectively, in contrast with the original RNA library that hardly bound the target protein. Moreover, these aptamers could partially inhibit RNA synthesis of the HCV subgenomic replicon when transfected into Huh-7 hepatoma cell lines. These results suggest that the RNA aptamers selected in vitro could be useful not only as therapeutic agents of HCV infection but also as a powerful tool for the study of the HCV RNA-dependent RNA polymerase mechanism.

Understanding the RNA-Specificity of HCV RdRp: Implications for Anti-HCV Drug Discovery

  • Kim, Jin-young;Chong, You-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • Unlike other viral polymerases, HCV RNA-dependent RNA polymerase (RdRp) has not been successfully inhibited by nucleoside analogues presumably due to its strong substrate specificity for RNA. Thus, in order to understand the RNA-specificity of HCV RdRp, the structural characteristics of the active site was investigated. The hereto unknown 2-OH binding pocket at the active site of RdRp provides invaluable implication for the development of novel anti-HCV nucleoside analogues.

Development of Hepatitis C Virus (HCV) Genome-Targeting Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase (C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 그 활성이 조절되는 HCV지놈 표적 Hammerhead 리보자임 개발)

  • Lee, Chang-Ho;Lee, Seong-Wook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.159-165
    • /
    • 2007
  • For the development of basic genetic materials for specific and effective therapeutic approach to suppress multiplication of hepatitis C virus (HCV), HCV internal ribosome entry site (IRES)-targeting hammerhead ribozyme which activity is allosterically regulated by HCV regulatory protein, NS5B RNA replicase, was developed. The ribozyme targeted most effectively to +382 nucleotide (nt) site of HCV IRES RNA. The allosteric ribozyme was designed to be composed of sequence of RNA aptamer to HCV NS5B, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding NS5B to the aptamer, and sequence of ribozyme targeting +382 nt of HCV IRES. Noticeably, we employed in vitro selection technology to identify the most appropriate communication module sequence which can induce ribozyme activity depending on the US5B protein. We demonstrated that the ribozyme was nonfunctional either in the absence of any proteins or in the presence of control bovine serum albumin. In sharp contrast, the allosteric ribozyme can induce activity of cleavage reaction with HCV IRES RNA in the presence of the HCV NS5B protein. This allosteric ribozyme can be used as lead compound for specific and effective anti-HCV agent, tool for highthroughput screening to isolate lead chemicals for HCV therapeutics, and ligand for biosensor system for HCV diagnosis.

Comparison of the Serum Cholesterol, Insulin Resistance and Markers of Metabolic Syndrome Based on Hepatitis C Virus RNA (C형 간염 바이러스 RNA 유무에 따른 지질, 인슐린저항성 및 대사증후군 지표 수준의 차이)

  • Cho, Sung-Hwan;Kim, Yun-Jin;Lee, Sang-Yeoup;Cho, Byung-Mann;Hwang, Hye-Lim;Yi, Yu-Hyeon;Cho, Young-Hye;Tak, Young-Jin;Jeong, Dong-Wook;Lee, Seung-Hun;Lee, Jeong-Gyu
    • Journal of agricultural medicine and community health
    • /
    • v.41 no.4
    • /
    • pp.205-216
    • /
    • 2016
  • Objectives: We compared the difference of lipid, insulin resistance and metabolic markers based on HCV RNA in Korean adults.Methods: This was a cross-sectional study of 222 subjects visited the health promotion center of Pusan nationaluniversity hospital from 2004 to 2007. Subjects were anti-HCV antibody positive and were performed RT-PCR for HCV RNA. The HCV RNA (+) group were 85 subjects, HCV RNA (-) control group were 115 subjects, and the HCV RNA (-) but past positive group were 22 subjects. We performed anthropometry, anti-HCV, RT-PCR, plasma concentrations of insulin, total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglyceride.Results: BMI, waist circumference, blood pressure, fasting plasma glucose, triglyceride, HDL cholesterol, insulin resistance such as HOMA-IR and QUICKI were not significantly different between HCV RNA positive and negative groups. The serum total cholesterol and LDL cholesterol level were significantly lower in the HCV RNA positive group than in the negative group ($186.24{\pm}37.63$ vs $197.22{\pm}37.23$ mg/dl, p=0.041, $111.66{\pm}34.06$ vs $121.38{\pm}35.50$ mg/dl, p=0.042). After adjusting age and sex, high total cholesterol (${\geq}200mg/dl$) (adjusted OR=0.51, 95%CI 0.28-0.94, p=0.03) and high LDL cholesterol (${\geq}130mg/dl$) (adjusted OR=0.46, 95%CI 0.24~0.87, p=0.02) were inversely associated with being HCV RNA positive (p<0.05). Conclusion: The serum total cholesterol and LDL-cholesterol level were significantly lower in HCV RNA (+) group than in HCV RNA (-) group, but not in HCV RNA (-) but past positive group. Prospective cohort studies are needed to clarify the relationship between HCV RNA and metabolic markers.

Rapid Detection of Serum HCV RNA by Combining Reverse Transcription and PCR without RNA Extraction

  • Jang, Jeong-Su;Lee, Kong-Joo
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.486-489
    • /
    • 1996
  • A simple, rapid, specific and sensitive method for the detection of serum hepatitis C virus (HCV) RNA using the reverse transcription-polymerase chain reaction (RT-PCR) technique without conventional RNA extraction was developed. HCV template RNA from serum was obtained by boiling the serum at $95^{\circ}C$ for 2 min, cooling rapidly in ice and removing the proteins by cetrifugation. RT-PCR amplifications including the reverse transcription and first PCR amplification were performed in one vessel containing both of reverse transcriptase and Taq DNA polymerase. The detection of HCV RNA from $10^{-3}{\mu}l$. serum was possible with this method. The suitability of this method for clinical analysis was evaluated by assaying HCV RNA in 225 patient samples including anti-HCV antibody negatives (13 samples) and positives (212 samples) by enzyme-linked immunosorbent assay test (ELISA). Detections of HCV RNA with this method were in 4 of 13 anti-HCV antibody negative samples (30.8%) and 95 of 212 positive samples (44.8%). The present method can be completed in 1 hr and has a wide range of application for the clinical utilities to determine the viral RNAS.

  • PDF

Structural Studies of Peptide Binding Interaction of HCV IRES Domain IV

  • Shin, Ji Yeon;Bang, Kyeong-Mi;Song, Hyun Kyu;Kim, Nak-Kyoon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.109-113
    • /
    • 2017
  • The hepatitis C virus (HCV) internal ribosome entry site (IRES) is an RNA structure located in the 5'-UTR of the HCV RNA genome. The HCV IRES consists of four domains I, II, III, and IV, where domains II - IV are recognized by 40S ribosomal subunit and the domain III is bound to eukaryotic initiation factor 3 (eIF3) for translation initiation. Here, we have characterized the tertiary interaction between an L-/K- rich peptide and the HCV IRES domain IV. To probe the peptide binding interface in RNA, we synthesized $^{13}C$- and $^{15}N$-double labeled RNA and the binding site was identified by using the chemical shift perturbation (CSP) NMR methods. Our results showed that the peptide binds to the upper stem of the IRES domain IV, indicating that the tertiary interaction between the IRES domain IV and the peptide would disrupt the initiation of translation of HCV mRNA by blocking the start codon exposure. This study will provide an insight into the new peptide-based anti-viral drug design targeting HCV IRES RNA.

Interaction of Stomatin with Hepatitis C Virus RNA Polymerase Stabilizes the Viral RNA Replicase Complexes on Detergent-Resistant Membranes

  • Kim, Jung-Hee;Rhee, Jin-Kyu;Ahn, Dae-Gyun;Kim, Kwang Pyo;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1744-1754
    • /
    • 2014
  • The hepatitis C virus (HCV) RNA genome is replicated by an RNA replicase complex (RC) consisting of cellular proteins and viral nonstructural (NS) proteins, including NS5B, an RNA-dependent RNA polymerase (RdRp) and key enzyme for viral RNA genome replication. The HCV RC is known to be associated with an intracellular membrane structure, but the cellular components of the RC and their roles in the formation of the HCV RC have not been well characterized. In this study, we took a proteomic approach to identify stomatin, a member of the integral proteins of lipid rafts, as a cellular protein interacting with HCV NS5B. Co-immunoprecipitation and co-localization studies confirmed the interaction between stomatin and NS5B. We demonstrated that the subcellular fraction containing viral NS proteins and stomatin displays RdRp activity. Membrane flotation assays with the HCV genome replication-competent subcellular fraction revealed that the HCV RdRp and stomatin are associated with the lipid raft-like domain of membranous structures. Stomatin silencing by RNA interference led to the release of NS5B from the detergent-resistant membrane, thereby inhibiting HCV replication in both HCV subgenomic replicon-harboring cells and HCV-infected cells. Our results identify stomatin as a cellular protein that plays a role in the formation of an enzymatically active HCV RC on a detergent-resistant membrane structure.

Validation of One-Step Real-Time RT-PCR Assay in Combination with Automated RNA Extraction for Rapid Detection and Quantitation of Hepatitis C Virus RNA for Routine Testing in Clinical Specimens

  • KIM BYOUNG-GUK;JEONG HYE-SUNG;BAEK SUN-YOUNG;SHIN JIN-HO;KIM JAE-OK;MIN KYUNG-IL;RYU SEUNG-REL;MIN BOK-SOON;KIM DO-KEUN;JEONG YONG-SEOK;PARK SUE-NIE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.595-602
    • /
    • 2005
  • A one-step real-time quantitative RT-PCR assay in combination with automated RNA extraction was evaluated for routine testing of HCV RNA in the laboratory. Specific primers and probes were developed to detect 302 bp on 5'-UTR of HCV RNA. The assay was able to quantitate a dynamic linear range of $10^7-10^1$ HCV RNA copies/reaction ($R^2=0.997$). The synthetic HCV RNA standard of $1.84{\pm}0.1\;(mean{\pm}SD)$ copies developed in this study corresponded to 1 international unit (IU) of WHO International Standard for HCV RNA (96/790 I). The detection limit of the assay was 3 RNA copies/reaction (81 IU/ml) in plasma samples. The assay was comparable to the Amplicor HCV Monitor (Monitor) assay with correlation coefficient r=0.985, but was more sensitive than the Monitor assay. The assay could be completed within 3 h from RNA extraction to detection and data analysis for up to 32 samples. It allowed rapid RNA extraction, detection, and quantitation of HCV RNA in plasma samples. The method provided sufficient sensitivity and reproducibility and proved to be fast and labor-saving, so that it was suitable for high throughput HCV RNA test.

Analysis of Hepatitis C Virus Genotypes and RNA Quantitative Values in Cheonan, Korea from 2007 to 2016

  • Bishguurmaa Renchindorj;Bo Kyeung Jung;Joowon Park
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.422-429
    • /
    • 2022
  • The hepatitis C virus (HCV) genome contains a positive-sense single-stranded RNA molecule, and it is classified into 8 genotypes and 87 subtypes. Globally, over 350,000 people die from liver cirrhosis and hepatocellular carcinoma caused by HCV each year. Here, the genotype distribution of HCV was estimated in the population in Cheonan, Korea using Sanger sequencing. In addition, the correlation between HCV RNA level and genotype was assessed using real-time polymerase chain reaction (PCR); similarly, the correlation of HCV RNA level with isolation year (2007-2016) was determined using 463 consecutive serum samples obtained from patients at Dankook University Hospital, Cheonan, Korea. In 2007, genotype 1b (54.2%) was predominant, followed by genotypes 2a (41.7%), 1a (2.1%) and 3a (2.1%); whereas in 2016, the predominant genotype was 2a (49.0%), followed by genotypes 1b (46.9%), 3b (2%), and 4a (2%). Neither age nor sex was correlated with HCV genotype. Furthermore, the mean HCV RNA level decreased significantly from 2012 to 2016 (p < 0.05). However, no significant correlations between genotype and HCV RNA level were found. Overall, the findings revealed that genotypes 2a and 1b were the most common in Cheonan, and the prevalence of HCV genotype 1b tended to decrease over the past decade.