• Title/Summary/Keyword: HCN channels

Search Result 10, Processing Time 0.022 seconds

Distinct Regional and Cellular Localization of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 in Cerebellar Cortex of Rat

  • Kwon, Young-Joon;Kim, Tae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • Objective : Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate the hyperpolarization-activated currents (Ih) that participate in regulating neuronal membrane potential and contribute critically to pacemaker activity, promoting synchronization of neuronal networks. However, distinct regional and cellular localization of HCN channels in the brain have not been precisely defined. Aim of this study was to verify the precise cellular location of HCN1 channels in rat cerebellum to better understand the physiological role these channels play in synaptic transmission between CNS neurons. Methods : HCN1 expression in rat brain was analyzed using immunohistochemistry and electron-microscopic observations. Postsynaptic density-95 (PSD-95), otherwise known as locating and clustering protein, was also examined to clarify its role in the subcellular location of HCN1 channels. In addition, to presume the binding of HCN1 channels with PSD-95, putative binding motifs in these channels were investigated using software-searching method. Results : HCN1 channels were locally distributed at the presynaptic terminal of basket cell and exactly corresponded with the location of PSD-95. Moreover, nine putative SH3 domain of PSD-95 binding motifs were discovered in HCN1 channels from motif analysis. Conclusion : Distinct localization of HCN1 channels in rat cerebellum is possible, especially when analyzed in conjunction with the SH3 domain of PSD-95. Considering that HCN1 channels contribute to spontaneous rhythmic action potentials, it is suggested that HCN1 channels located at the presynaptic terminal of neurons may play an important role in synaptic plasticity.

Presynatic Expression of HCN Channel Subunits in Cerebellar Basket Cells

  • Yi, Jee-Hyun;Park, Kyung-Joon;Kang, Shin-Jung;Shin, Ki-Soon
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.199-204
    • /
    • 2007
  • HCN (hyperpolarization-activated cyclic nucleotide-gated) channels, whose gene family consists of four subunits (HCN1-4), mediate depolarizing cation currents and contribute to controlling neuronal excitability. In the present study, immunohistochemical and electrophysiological approaches were used to elucidate the role of HCN channels in the cerebellum. Immunohistochemical labeling for HCN1 and HCN2 channels revealed localized expression of both channels at pinceau, the specialized structure of presynaptic axon terminals of basket cells. To determine the functional role of the presynaptic HCN channels, spontaneous inhibitory postsynaptic currents (IPSCs) were recorded from Purkinje cells, the main synaptic targets of basket cells in the cerebellum. While activation of HCN channels by 8-bromo-cAMP increased amplitude of spontaneous IPSCs, blockade of the activated HCN channels by subsequent ZD7288 application reduced the amplitude of spontaneous IPSCs to the level far below the control. Our results imply that modulation of HCN1 and HCN2 channels in presynaptic terminals of basket cells regulates neurotransmitter release, thereby controlling the excitability of Purkinje cells.

Intracellular cAMP-modulated Gate in Hyperpolarization Activated Cation Channels

  • Park, Kyung-Joon;Shin, Ki-Soon
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.169-173
    • /
    • 2007
  • Hyperpolarization-activated nonselective cation channels (HCNs) play a pivotal role in producing rhythmic electrical activity in the heart and the nerve cells. In our previous experiments, voltage-dependent $Cd^{2+}$ access to one of the substituted cysteines in S6, T464C, supports the existence of an intracellular voltage-dependent activation gate. Direct binding of intracellular cAMP to HCN channels also modulates gating. Here we attempted to locate the cAMP-modulated structure that can modify the gating of HCN channels. SpHCN channels, a sea urchin homologue of the HCN family, became inactivated rapidly and intracellular cAMP removed this inactivation, resulting in about eight-fold increase of steady-state current level. T464C was probed with $Cd^{2+}$ applied to the intracellular side of the channel. We found that access of $Cd^{2+}$ to T464C was strongly gated by cAMP as well as voltage. Release of bound $Cd^{2+}$ by DMPS was also gated in a cAMP-dependent manner. Our results suggest the existence of an intracellular cAMP-modulated gate in the lower S6 region of spHCN channels.

Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons

  • Han, Jin-Eon;Cho, Jin-Hwa;Choi, In-Sun;Kim, Do-Yeon;Jang, Il-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.215-223
    • /
    • 2017
  • The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent $K^+$ and $Ca^{2+}$ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent $K^+$currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent $K^+$ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker $Cs^+$ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent $Ca^{2+}$ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

An ab initio Study on the Molecular Elimination Reactions of Methacrylonitrile

  • Oh, Chang-Young;Park, Tae-Jun;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1177-1184
    • /
    • 2005
  • Ab initio quantum chemical molecular orbital calculations have been performed for the unimolecular decomposition of methacrylonitrile ($CH_3C(CN)=CH_2$), especially for HCN and $H_2$ molecular elimination channels. Structures and energies of the reactants, products, and relevant species along the individual reaction pathways were determined by MP2 gradient optimization and MP4 single point energy calculations. Direct four-center elimination of HCN and three-center elimination of H2 channels were identified. In addition, H or CN migration followed by HCN or H2 elimination channels via the methylcyanoethylidene intermediate was also identified. Unlike the case of crotonitrile previously studied, in which the dominant decomposition process was the direct three-center elimination of HCN, the most important reaction pathway should be the direct threecenter elimination of $H_2$ in the case of methacrylonitrile.

Alterations in hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus

  • Oh, Yun-Jung;Na, Jongju;Jeong, Ji-Heon;Park, Dae-Kyoon;Park, Kyung-Ho;Ko, Jeong-Sik;Kim, Duk-Soo
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.635-640
    • /
    • 2012
  • To understand the effects of HCN as potential mediators in the pathogenesis of epilepsy that evoke long-term impaired excitability; the present study was designed to elucidate whether the alterations of HCN expression induced by status epilepticus (SE) is responsible for epileptogenesis. Although HCN1 immunoreactivity was observed in the hippocampus, its immunoreactivities were enhanced at 12 hrs following SE. Although, HCN1 immunoreactivities were reduced in all the hippocampi at 2 weeks, a re-increase in the expression at 2-3 months following SE was observed. In contrast to HCN1, HCN 4 expressions were un-changed, although HCN2 immunoreactive neurons exhibited some changes following SE. Taken together, our findings suggest that altered expressions of HCN1 following SE may be mainly involved in the imbalances of neurotransmissions to hippocampal circuits; thus, it is proposed that HCN1 may play an important role in the epileptogenic period as a compensatory response.

Isomerization and Dissociation of the Acrylonitrile Radical Cation: A Theoretical Study

  • Jung, Sun-Hwa;Lee, Gee-Hyung;Choe, Joong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3873-3879
    • /
    • 2011
  • The potential energy surface (PES) for the isomerizations and dissociations of the acrylonitrile radical cation was determined from the CBS-QB3 and CBS-APNO calculations. The Rice-Ramsperger-Kassel-Marcus model calculations were performed based on the PES in order to predict the competitions among the dissociation channels. The mechanisms for the loss of $H^{\bullet}$, $H_2$, $CN^{\bullet}$, HCN, and HNC were proposed. The $C_3H_2N^+$ ion formed by loss of $H^{\bullet}$ was predicted as a mixture of $CH{\equiv}C-C=NH^+$, $CH{\equiv}C-N{\equiv}CH^+$, and $CH_2=C-C{\equiv}N^+$. Furthermore $CH{\equiv}C-C{\equiv}N^{+{\bullet}}$ was formed mainly by a consecutive 1,2-H shift and 1,2-H2 elimination.

Sensory and motor axons are different: implications for neurological disease

  • Burke, David;Howells, James;Kiernan, Matthew C.
    • Annals of Clinical Neurophysiology
    • /
    • v.19 no.1
    • /
    • pp.3-12
    • /
    • 2017
  • Using threshold tracking, differences have been established between large myelinated sensory and ${\alpha}$ motor axons in humans. Major differences are that sensory axons are relatively depolarised at rest such that they have a greater persistent $Na^+$ current, and have greater activity of hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels. Sensory axons may thereby be protected from hyperpolarising stresses, and are less likely to develop conduction block. However, the corollary is that sensory axons are more excitable and more likely to become ectopically active.

Matching game based resource allocation algorithm for energy-harvesting small cells network with NOMA

  • Wang, Xueting;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5203-5217
    • /
    • 2018
  • In order to increase the capacity and improve the spectrum efficiency of wireless communication systems, this paper proposes a rate-based two-sided many-to-one matching game algorithm for energy-harvesting small cells with non-orthogonal multiple access (NOMA) in heterogeneous cellular networks (HCN). First, we use a heuristic clustering based channel allocation algorithm to assign channels to small cells and manage the interference. Then, aiming at addressing the user access problem, this issue is modeled as a many-to-one matching game with the rate as its utility. Finally, considering externality in the matching game, we propose an algorithm that involves swap-matchings to find the optimal matching and to prove its stability. Simulation results show that this algorithm outperforms the comparing algorithm in efficiency and rate, in addition to improving the spectrum efficiency.