• 제목/요약/키워드: HCM clustering

검색결과 51건 처리시간 0.025초

HCM 클러스터링과 유전자 알고리즘을 이용한 다중 퍼지 모델 동정 (Identification of Multi-Fuzzy Model by means of HCM Clustering and Genetic Algorithms)

  • 박호성;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.370-370
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of HCM clustering and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy ate identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy mode] and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

Design of improved Mulit-FNN for Nonlinear Process modeling

  • Park, Hosung;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.102.2-102
    • /
    • 2002
  • In this paper, the improved Multi-FNN (Fuzzy-Neural Networks) model is identified and optimized using HCM (Hard C-Means) clustering method and optimization algorithms. The proposed Multi-FNN is based on FNN and use simplified and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and genetic algorithms (GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parame...

  • PDF

HCM 클러스터링 알고리즘 기반 비퍼지 추론 시스템의 비선형 특성 (Nonlinear Characteristics of Non-Fuzzy Inference Systems Based on HCM Clustering Algorithm)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.5379-5388
    • /
    • 2012
  • 비선형 공정에 대한 퍼지 모델링에서, 퍼지 규칙은 일반적으로 입력 변수 선택, 공간 분할 수 및 소속 함수에 의해 형성된다. 비선형 공정에 대한 퍼지 규칙의 생성은 차원이 증가할수록 규칙의 수가 지수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 입력 공간의 퍼지 분할에 의한 퍼지 규칙을 생성함으로써 복잡한 비선형 공정을 모델링 할 수 있다. 따라서 본 논문에서는 HCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 비퍼지 추론 시스템의 규칙을 생성한다. 규칙의 전반부 파라미터는 HCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 규칙의 후반부는 다항식 함수의 형태로 표현되며, 각 규칙의 후반부 파라미터들은 표준 최소자승법에 의해 동정된다. 마지막으로, 비선형 공정으로는 널리 이용되는 데이터를 이용하여 비선형 특성 및 성능을 평가한다. 본 실험을 통해 고차원의 비선형 시스템은 매우 적은 수의 규칙을 가지고 모델링할 수 있었다.

유전자 알고리즘에 의한 IG기반 퍼지 모델의 최적 동정 (Optimal Identification of IG-based Fuzzy Model by Means of Genetic Algorithms)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a optimal identification of information granulation(IG)-based fuzzy model to carry out the model identification of complex and nonlinear systems. To optimally identity we use genetic algorithm (GAs) sand Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the selected input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

유전자적 최적 정보 입자 기반 퍼지 추론 시스템 (Genetically Optimized Information Granules-based FIS)

  • 박건준;오성권;이영일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.146-148
    • /
    • 2005
  • In this paper, we propose a genetically optimized identification of information granulation(IG)-based fuzzy model. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the genetic algorithms and the least square method. And also, we exploite consecutive identification of fuzzy model in case of identification of structure and parameters. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • 제1권2호
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.

데이터 정보를 이용한 퍼지 뉴럴 네트워크의 새로운 설계 (A New Design of Fuzzy Neural Networks Using Data Information)

  • 박건준;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.273-275
    • /
    • 2006
  • In this paper, we introduce a new design of fuzzy neural networks using input-output data information of target system. The proposed fuzzy neural networks is constructed by input-output data information and used the center of data distance by HCM clustering to obtain the characteristics of data. A membership function is defined by HCM clustering and is applied input-output dat included each rule to conclusion polynomial functions. We use triangular membership functions and simplified fuzzy inference, linear fuzzy inference, and modified quadratic fuzzy inference in conclusion. In the networks learning, back propagation algorithm of network is used to update the parameters of the network. The proposed model is evaluated with benchmark data.

  • PDF

HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계 (Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF

HCM을 이용한 퍼지 모델의 On-Line 동정 (On-line Identification of fuzzy model using HCM algorithm)

  • 박호성;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2929-2931
    • /
    • 1999
  • In this paper, an adaptive fuzzy inference and HCM(Hard C-Means) clustering method are used for on-line fuzzy modeling of nonlinear and complex system. Here HCM clustering method is utilized for determining the initial parameter of membership function of fuzzy premise rules and also avoiding overflow phenomenon during the identification of consequence parameters. To obtain the on-line model structure of fuzzy systems. we use the recursive least square method for the consequent parameter identification. And the proposed on-line identification algorithm is carried out and is evaluated for sewage treatment process system.

  • PDF

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.